
Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 7 River and coastal flooding



## 7.1 Risk of Flooding from Rivers and Sea (RoFRaS)

#### Records within 50m 2

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 100 chance) or High (greater than or equal to 1 in 30 chance).

Features are displayed on the River and coastal flooding map on page 89

| Distance | RoFRaS flood risk |
|----------|-------------------|
| On site  | Medium            |
| 0 - 50m  | High              |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from the Environment Agency and Natural Resources Wales.

#### 7.2 Historical Flood Events

Records within 250m 0

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

#### 7.3 Flood Defences

Records within 250m 0

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

### 7.4 Areas Benefiting from Flood Defences

Records within 250m 0

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

### 7.5 Flood Storage Areas

Records within 250m 0

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.


This data is sourced from the Environment Agency and Natural Resources Wales.



Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# **River and coastal flooding - Flood Zones**



#### 7.6 Flood Zone 2

Records within 50m 1

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

Features are displayed on the River and coastal flooding map on page 89

Location Type
On site Zone 2 - (Fluvial /Tidal Models)

This data is sourced from the Environment Agency and Natural Resources Wales.





Your ref: Oxfordshire, Railfreight, Interchange

1

**Grid ref**: 453276 226189

### 7.7 Flood Zone 3

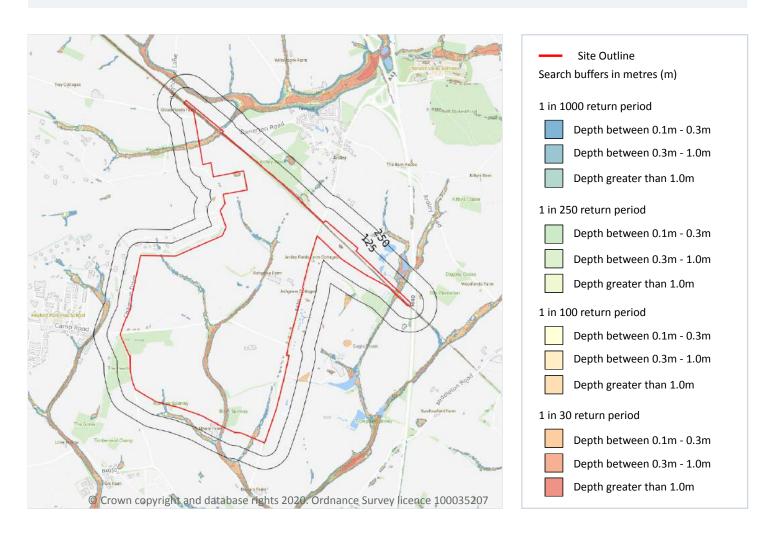
Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

Features are displayed on the River and coastal flooding map on page 89

| Location | Туре                      |
|----------|---------------------------|
| On site  | Zone 3 - (Fluvial Models) |

This data is sourced from the Environment Agency and Natural Resources Wales.






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 8 Surface water flooding



### 8.1 Surface water flooding

Highest risk on site

1 in 30 year, Greater than 1.0m

## Highest risk within 50m

1 in 30 year, Greater than 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 93

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.





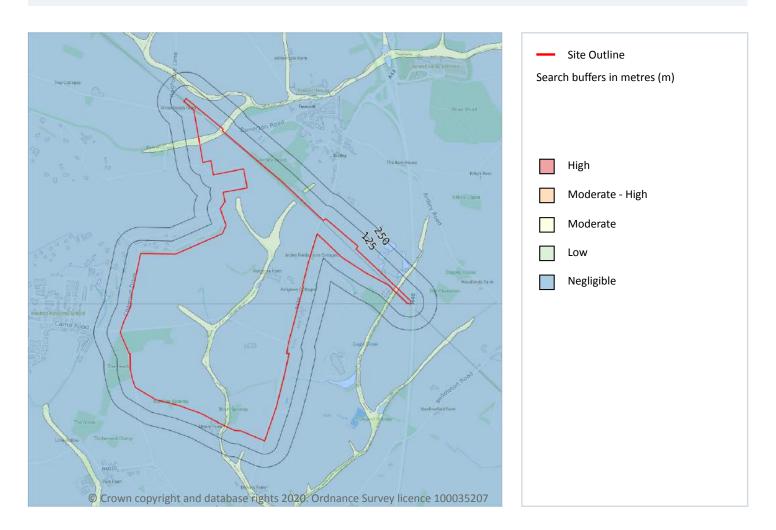
Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

The table below shows the maximum flood depths for a range of return periods for the site.

| Return period  | Maximum modelled depth |
|----------------|------------------------|
| 1 in 1000 year | Greater than 1.0m      |
| 1 in 250 year  | Greater than 1.0m      |
| 1 in 100 year  | Greater than 1.0m      |
| 1 in 30 year   | Greater than 1.0m      |

This data is sourced from Ambiental Risk Analytics.






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 9 Groundwater flooding



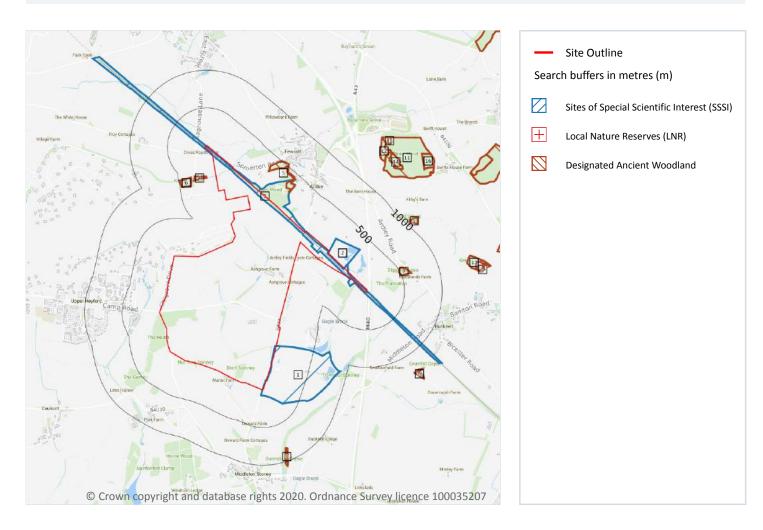
## 9.1 Groundwater flooding

Highest risk on site Low Highest risk within 50m Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 95

This data is sourced from Ambiental Risk Analytics.






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 10 Environmental designations



## 10.1 Sites of Special Scientific Interest (SSSI)

#### Records within 2000m 3

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

Features are displayed on the Environmental designations map on page 96

| ID | Location | Name             | Data source     |
|----|----------|------------------|-----------------|
| 1  | On site  | Ardley Trackways | Natural England |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Name                      | Data source     |
|----|----------|---------------------------|-----------------|
| 2  | On site  | Ardley Trackways          | Natural England |
| 3  | On site  | Ardley Cutting and Quarry | Natural England |

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

### 10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m 0

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

## 10.3 Special Areas of Conservation (SAC)

Records within 2000m 0

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

### 10.4 Special Protection Areas (SPA)

Records within 2000m 0

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

### 10.5 National Nature Reserves (NNR)

Records within 2000m

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

info@groundsure.com 08444 159 000





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

### 10.6 Local Nature Reserves (LNR)

Records within 2000m 0

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

## 10.7 Designated Ancient Woodland

Records within 2000m 18

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

Features are displayed on the Environmental designations map on page 96

| ID | Location | Name             | Woodland Type                   |
|----|----------|------------------|---------------------------------|
| 4  | 127m W   | Unknown          | Ancient & Semi-Natural Woodland |
| 5  | 251m NE  | Ardley Wood      | Ancient & Semi-Natural Woodland |
| 6  | 333m W   | Kennel Copse     | Ancient & Semi-Natural Woodland |
| 7  | 484m NE  | Digging Copse    | Ancient & Semi-Natural Woodland |
| 8  | 827m S   | Burntclose Copse | Ancient & Semi-Natural Woodland |
| 9  | 1041m NE | Unknown          | Ancient & Semi-Natural Woodland |
| 10 | 1238m SE | Grunthill Copse  | Ancient & Semi-Natural Woodland |
| 11 | 1284m NE | Stoke Wood       | Ancient & Semi-Natural Woodland |
| 12 | 1377m NE | Stoke Wood       | Ancient Replanted Woodland      |
| 13 | 1381m E  | Great Copse      | Ancient & Semi-Natural Woodland |
| 14 | 1401m NE | Stoke Wood       | Ancient Replanted Woodland      |
| А  | 1531m E  | Great Copse      | Ancient & Semi-Natural Woodland |
| Α  | 1572m E  | Great Copse      | Ancient & Semi-Natural Woodland |
| 15 | 1592m NE | Stoke Wood       | Ancient Replanted Woodland      |
|    |          |                  |                                 |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Name             | Woodland Type                   |
|----|----------|------------------|---------------------------------|
| А  | 1604m E  | Great Copse      | Ancient & Semi-Natural Woodland |
| 16 | 1668m NE | Stoke Wood       | Ancient Replanted Woodland      |
| -  | 1793m E  | Nettle Copse     | Ancient & Semi-Natural Woodland |
| 18 | 1810m E  | Twelveacre Copse | Ancient & Semi-Natural Woodland |

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

## **10.8 Biosphere Reserves**

Records within 2000m 0

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

#### 10.9 Forest Parks

Records within 2000m 0

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

#### **10.10 Marine Conservation Zones**

Records within 2000m 0

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

#### 10.11 Green Belt

Records within 2000m 0

Areas designated to prevent urban sprawl by keeping land permanently open.

This data is sourced from the Ministry of Housing, Communities and Local Government.





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

### **10.12 Proposed Ramsar sites**

Records within 2000m 0

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

### 10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m 0

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

## 10.14 Potential Special Protection Areas (pSPA)

Records within 2000m 0

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

#### 10.15 Nitrate Sensitive Areas

Records within 2000m 0

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.



(100)



Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

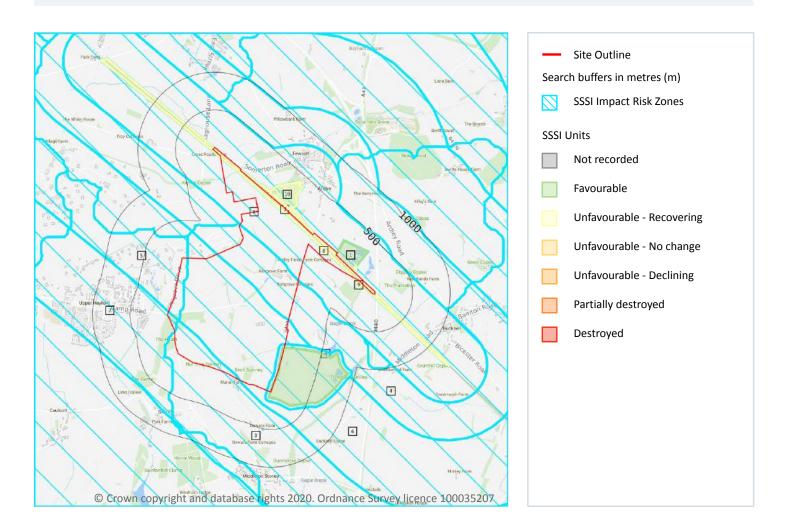
#### **10.16 Nitrate Vulnerable Zones**

Records within 2000m 10

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These are areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

| Location          | Name                                             | Туре          | NVZ ID | Status   |
|-------------------|--------------------------------------------------|---------------|--------|----------|
| On site           | Great Ouse NVZ                                   | Surface Water | S391   | Existing |
| On site           | Anglian Great Oolite                             | Groundwater   | G73    | Existing |
| On site           | Cherwell (Ray to Thames) and Woodeaton Brook NVZ | Surface Water | S472   | Existing |
| On site           | Cherwell (Ray to Thames) and Woodeaton Brook NVZ | Surface Water | S472   | Existing |
| On site           | Cherwell (Ray to Thames) and Woodeaton Brook NVZ | Surface Water | S472   | Existing |
| On site           | Cherwell (Ray to Thames) and Woodeaton Brook NVZ | Surface Water | S472   | Existing |
|                   | Cherwen (hay to manies) and woodedton brook have | Juliace Water |        | LXISTING |
| 71m NE            | Anglian Great Oolite                             | Groundwater   | G73    | Existing |
| 71m NE<br>457m NE |                                                  |               |        |          |
|                   | Anglian Great Oolite                             | Groundwater   | G73    | Existing |

This data is sourced from Natural England and Natural Resources Wales.






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# **SSSI Impact Zones and Units**



## 10.17 SSSI Impact Risk Zones

Records on site 9

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 102





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Type of developments requiring consultation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | On site  | Infrastructure - Airports, helipads and other aviation proposals.  Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction.  Air pollution - Livestock & poultry units with floorspace > 500m², slurry lagoons > 750m² & manure stores > 3500t.  Discharges - Any discharge of water or liquid waste of more than 20m³/day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3  | On site  | Infrastructure - Airports, helipads and other aviation proposals.  Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction.  Air pollution - Livestock & poultry units with floorspace > 500m², slurry lagoons > 750m² & manure stores > 3500t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4  | On site  | Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Residential - Residential development of 100 units or more.  Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas.  Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons > 200m² & manure stores > 250tt).  Combustion - General combustion processes >20MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion  Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill.  Composting - Any composting proposal with more than 500 tonnes maximum annual operational throughput. Incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management.  Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Type of developments requiring consultation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | On site  | Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons > 200m² & manure stores > 250t).  Combustion - General combustion processes >20MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. Incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management Discharges - Any discharge of water or liquid waste of more than 20m³/day to ground (ie to seep away) or to surface water, such as a beck or stream (NB This does not include discharges to mains sewer which are unlikely to pose a risk at this location) Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m² or more. |
| 6  | On site  | Infrastructure - Pipelines, pylons and overhead cables. Any transport proposal including road, rail and by water (excluding routine maintenance). Airports, helipads and other aviation proposals Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Air pollution - Any industrial/agricultural development that could cause AIR POLLUTION (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons > 200m² & manure stores > 250t).  Combustion - General combustion processes >20MW energy input. Incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion Waste - Landfill. Incl: inert landfill, non-hazardous landfill, hazardous landfill.  Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. Incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m² or more.                                                                                                                                                                                                                                                            |
| Α  | On site  | All applications - All Planning Applications - Except Householder Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Α  | On site  | All applications - All Planning Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В  | On site  | All applications - All Planning Applications - Except Householder Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В  | On site  | All applications - All Planning Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

This data is sourced from Natural England.







Your ref: Oxfordshire, Railfreight, Interchange

6

**Grid ref**: 453276 226189

#### 10.18 SSSI Units

Records within 2000m

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

Features are displayed on the SSSI Impact Zones and Units map on page 102

ID: 1

Location: On site

SSSI name: Ardley Trackways
Unit name: Ardley North
Broad habitat: Inland Rock
Condition: Favourable

Reportable features:

| Feature name                        | Feature condition | Date of assessment |
|-------------------------------------|-------------------|--------------------|
| EA - Jurassic - Cretaceous Reptilia | Favourable        | 15/10/2009         |

ID: 7

Location: On site

SSSI name: Ardley Cutting and Quarry

Unit name: Cutting

Broad habitat: Calcareous Grassland - Lowland Condition: Unfavourable - Recovering

Reportable features:

| Feature name                                                                           | Feature condition         | Date of assessment |
|----------------------------------------------------------------------------------------|---------------------------|--------------------|
| ER - Bathonian                                                                         | Favourable                | 22/08/2012         |
| Invert. assemblage F112 open short sward                                               | -                         | -                  |
| Lowland calcareous grassland (CG3-5)                                                   | Unfavourable - Recovering | 22/08/2012         |
| Populations of nationally scarce butterfly species - Hamearis lucina, Duke of Burgundy | -                         | -                  |

ID: 8

Location: On site

SSSI name: Ardley Cutting and Quarry

Unit name: South East Broad habitat: Earth Heritage







Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

Condition: Unfavourable - Recovering

Reportable features:

Feature nameFeature conditionDate of assessmentED - BathonianUnfavourable - Recovering01/10/2009

ID: A

Location: On site

SSSI name: Ardley Trackways
Unit name: Dewars Farm
Broad habitat: Inland Rock
Condition: Favourable

Reportable features:

| Feature name                        | Feature condition | Date of assessment |
|-------------------------------------|-------------------|--------------------|
| EA - Jurassic - Cretaceous Reptilia | Favourable        | 15/10/2009         |

ID:

Location: 8m SW

SSSI name: Ardley Cutting and Quarry

Unit name: South East Broad habitat: Earth Heritage

Condition: Unfavourable - Recovering

Reportable features:

| Feature name   | Feature condition         | Date of assessment |
|----------------|---------------------------|--------------------|
| ED - Bathonian | Unfavourable - Recovering | 01/10/2009         |

ID: 10

Location: 22m NE

SSSI name: Ardley Cutting and Quarry

Unit name: Ardley Wood

Broad habitat: Calcareous Grassland - Lowland Condition: Unfavourable - Recovering

Reportable features:

| Feature name                             | Feature condition         | Date of assessment |
|------------------------------------------|---------------------------|--------------------|
| ED - Bathonian                           | Unfavourable - Recovering | 27/09/2012         |
| Invert. assemblage F112 open short sward | -                         | -                  |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Feature name                                                                           | Feature condition         | Date of assessment |
|----------------------------------------------------------------------------------------|---------------------------|--------------------|
| Lowland calcareous grassland (CG3-5)                                                   | Unfavourable - Recovering | 27/09/2012         |
| Populations of nationally scarce butterfly species - Hamearis lucina, Duke of Burgundy | -                         | -                  |

This data is sourced from Natural England and Natural Resources Wales.






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

# 11 Visual and cultural designations



## 11.1 World Heritage Sites

Records within 250m 0

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

### 11.2 Area of Outstanding Natural Beauty

Records within 250m 0

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

#### 11.3 National Parks

Records within 250m 0

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic well-being of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

## **11.4 Listed Buildings**

Records within 250m 1

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

Features are displayed on the Visual and cultural designations map on page 108

| ID | Location | Name                                                                                                         | Grade | Reference Number | Listed date |
|----|----------|--------------------------------------------------------------------------------------------------------------|-------|------------------|-------------|
| 1  | On site  | Barn Approximately 30 Metres North Of Ashgrove Farmhouse (Not Included), Ardley, Cherwell, Oxfordshire, OX27 | II    | 1046879          | 26/02/1988  |

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.







Your ref: Oxfordshire, Railfreight, Interchange

1

**Grid ref**: 453276 226189

#### 11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

Features are displayed on the Visual and cultural designations map on page 108

| ID | Location | Name              | District | Date of designation |
|----|----------|-------------------|----------|---------------------|
| 2  | On site  | RAF Upper Heyford | Cherwell | 04/2006             |

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

#### 11.6 Scheduled Ancient Monuments

Records within 250m 0

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

## 11.7 Registered Parks and Gardens

Records within 250m 0

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 12 Agricultural designations



## 12.1 Agricultural Land Classification

Records within 250m 8

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 111





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Classification      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----|----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3  | On site  | Grade 2             | Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1. |  |
| 4  | On site  | Grade 3             | Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.                                                                                                                                                                                    |  |
| 5  | On site  | Non<br>Agricultural | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6  | 4m S     | Grade 3b            | Moderate quality agricultural land. Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.                                                                                                                                                                                                                  |  |
| 7  | 6m S     | Grade 3b            | Moderate quality agricultural land. Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.                                                                                                                                                                                                                  |  |
| 8  | 10m N    | Grade 3b            | Moderate quality agricultural land. Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.                                                                                                                                                                                                                  |  |
| 9  | 130m W   | Grade 3b            | Moderate quality agricultural land. Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.                                                                                                                                                                                                                  |  |
| 10 | 236m W   | Grade 2             | Very good quality agricultural land. Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1. |  |

This data is sourced from Natural England.

## 12.2 Open Access Land

Records within 250m 0

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.





Your ref: Oxfordshire, Railfreight, Interchange

0

**Grid ref**: 453276 226189

### 12.3 Tree Felling Licences

Records within 250m

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

### 12.4 Environmental Stewardship Schemes

Records within 250m

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment.

| Location | Reference  | Scheme                   | Start Date | End date   |
|----------|------------|--------------------------|------------|------------|
| On site  | AG00456291 | Entry Level Stewardship  | 01/10/2013 | 30/09/2018 |
| On site  | AG00476091 | Entry Level Stewardship  | 01/09/2013 | 31/08/2018 |
| On site  | AG00282978 | Higher Level Stewardship | 01/07/2010 | 30/06/2020 |
| 159m NW  | AG00501589 | Entry Level Stewardship  | 01/10/2013 | 30/09/2018 |

This data is sourced from Natural England.

## 12.5 Countryside Stewardship Schemes

Records within 250m 4

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

| Location | Reference | Scheme                                | Start Date | End Date   |
|----------|-----------|---------------------------------------|------------|------------|
| On site  | 639896    | Countryside Stewardship (Middle Tier) | 01/01/2019 | 31/12/2023 |
| 117m N   | 639896    | Countryside Stewardship (Middle Tier) | 01/01/2019 | 31/12/2023 |
| 159m NW  | 645383    | Countryside Stewardship (Middle Tier) | 01/01/2019 | 31/12/2023 |
| 170m N   | 639896    | Countryside Stewardship (Middle Tier) | 01/01/2019 | 31/12/2023 |



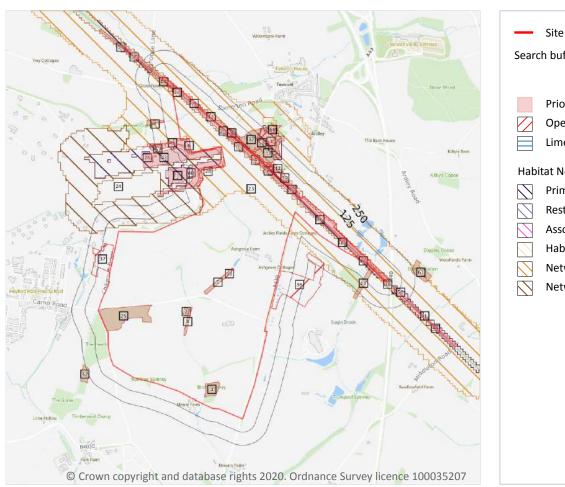


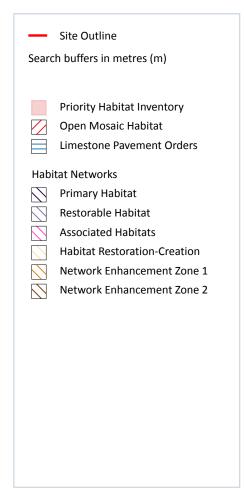


Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from Natural England.




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 13 Habitat designations





## **13.1 Priority Habitat Inventory**

#### Records within 250m 72

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

Features are displayed on the Habitat designations map on page 115

| ID | Location | Main Habitat                 | Other habitats                            |
|----|----------|------------------------------|-------------------------------------------|
| 1  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 2  | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |
| 3  | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |
| 4  | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Main Habitat                 | Other habitats                            |
|----|----------|------------------------------|-------------------------------------------|
| 5  | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |
| 6  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)           |
| 7  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)            |
| 8  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)            |
| 9  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 10 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 11 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 12 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 13 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 14 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 15 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 16 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 17 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 18 | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |
| 19 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 20 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 21 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 22 | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| 25 | On site  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)           |
| Α  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)            |
| Α  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| В  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| В  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| С  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| С  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| D  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| D  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
| E  | On site  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1) |
|    |          |                              |                                           |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Main Habitat                 | Other habitats                                               |
|----|----------|------------------------------|--------------------------------------------------------------|
| G  | 1m NE    | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 27 | 3m NE    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |
| 28 | 3m N     | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| 29 | 3m SW    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |
| 30 | 5m NE    | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 31 | 6m NE    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |
| 32 | 7m NE    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 33 | 7m NE    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 34 | 8m NE    | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 35 | 10m S    | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| G  | 14m NE   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| G  | 14m NE   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 38 | 17m S    | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)                               |
| 39 | 18m NE   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |
| 40 | 19m NE   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| F  | 20m N    | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| 41 | 21m NE   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| 42 | 37m NE   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 43 | 50m W    | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| Н  | 65m SE   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| Н  | 75m SE   | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)                               |
| 46 | 77m SE   | Lowland calcareous grassland | Main habitat: LCGRA (ENSIS L1)                               |
| 47 | 85m NE   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |
| 51 | 100m NE  | Lowland calcareous grassland | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |
| 52 | 114m NE  | Lowland calcareous grassland | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 53 | 120m NE  | Lowland calcareous grassland | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |
| K  | 127m W   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |
| K  | 127m W   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Main Habitat                 | Other habitats                                               |
|----|----------|------------------------------|--------------------------------------------------------------|
| 54 | 129m NE  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| J  | 132m W   | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%)                              |
| 55 | 134m NW  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 56 | 135m NE  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 57 | 141m NW  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 58 | 146m SE  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 59 | 152m NW  | Lowland calcareous grassland | Main habitat: LCGRA (INV > 50%, ENSIS L1)                    |
| 60 | 197m NE  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 62 | 225m W   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |
| 63 | 227m E   | Deciduous woodland           | Main habitat: DWOOD (INV > 50%)                              |
| 64 | 231m NE  | Deciduous woodland           | Main habitat: DWOOD (INV > 50%); LCGRA (ENSIS L1)            |
| 65 | 231m NE  | Lowland calcareous grassland | Main habitat: DWOOD (INV > 50%); LCGRA (INV > 50%, ENSIS L1) |

This data is sourced from Natural England.

#### **13.2 Habitat Networks**

## Records within 250m 13

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

Features are displayed on the Habitat designations map on page 115

| ID | Location | Туре                       | Habitat                      |  |
|----|----------|----------------------------|------------------------------|--|
| 23 | On site  | Network Enhancement Zone 1 | Not specified                |  |
| 24 | On site  | Network Enhancement Zone 2 | Not specified                |  |
| 26 | On site  | Primary Habitat            | Lowland calcareous grassland |  |
| E  | On site  | Primary Habitat            | Lowland calcareous grassland |  |
| F  | On site  | Primary Habitat            | Lowland calcareous grassland |  |
| 44 | 51m SE   | Primary Habitat            | Lowland calcareous grassland |  |
| 45 | 69m W    | Network Enhancement Zone 2 | Not specified                |  |
|    |          |                            |                              |  |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Туре                       | Habitat                      |
|----|----------|----------------------------|------------------------------|
| 48 | 87m W    | Network Enhancement Zone 2 | Not specified                |
| 49 | 90m W    | Network Enhancement Zone 2 | Not specified                |
| 50 | 90m SW   | Network Enhancement Zone 2 | Not specified                |
| J  | 112m W   | Primary Habitat            | Lowland calcareous grassland |
| 61 | 202m W   | Network Enhancement Zone 2 | Not specified                |

This data is sourced from Natural England.

## 13.3 Open Mosaic Habitat

Records within 250m 3

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

Features are displayed on the Habitat designations map on page 115

| ID | Location | Site<br>reference                                                        | Identificati<br>on<br>confidence | Primary source                                            | Secondary source                                  | Tertiary source                               |
|----|----------|--------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| 36 | 13m E    | BRITPITS<br>ref: 3603;<br>HLD_refs:<br>EAHLD1321<br>5;<br>EAHLD1321<br>7 | Low                              | British Geological Survey<br>BRITPITS database            | UK Perspectives Aerial<br>Photography             | Environment Agency<br>Historic Landfill Sites |
| 37 | 15m W    | NLUD Ref:<br>310500241;<br>BRITPITS<br>ref: 57206                        | Low                              | National Land Use Database -<br>Previously Developed Land | British Geological<br>Survey BRITPITS<br>database | UK Perspectives Aerial<br>Photography         |
| I  | 100m NE  | BRITPITS<br>ref: 6933                                                    | Low                              | British Geological Survey<br>BRITPITS database            | Environment Agency<br>Historic Landfill Sites     | UK Perspectives Aerial<br>Photography         |

This data is sourced from Natural England.





Your ref: Oxfordshire, Railfreight, Interchange

0

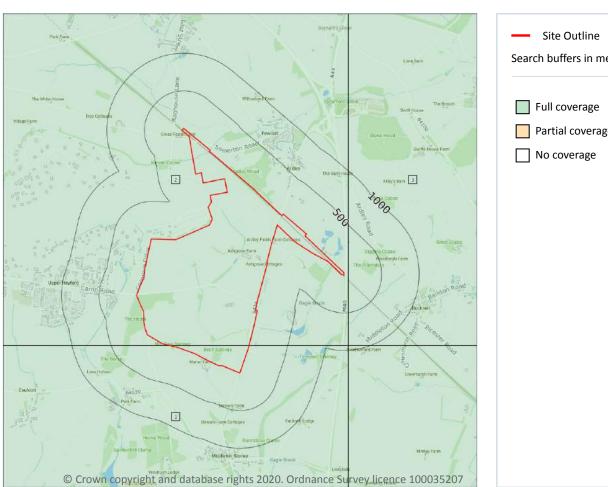
**Grid ref**: 453276 226189

#### 13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

# 14 Geology 1:10,000 scale - Availability





## 14.1 10k Availability

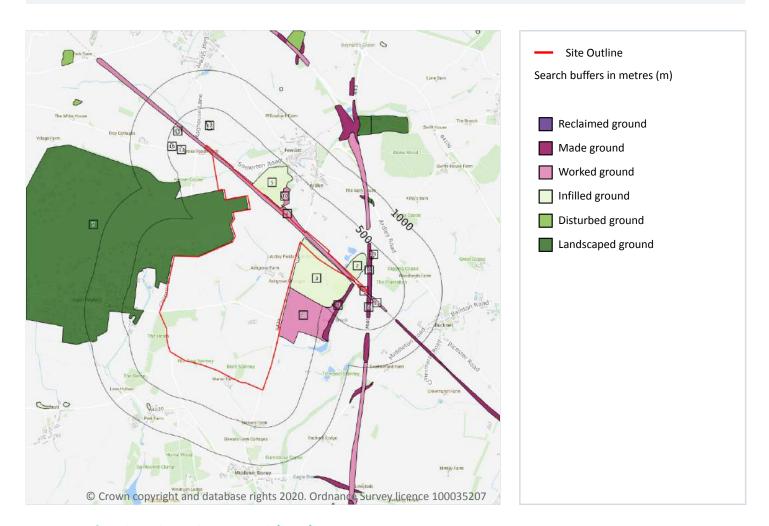
#### Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 121

| ID | Location | Artificial | Superficial | Bedrock | Mass movement | Sheet No. |
|----|----------|------------|-------------|---------|---------------|-----------|
| 1  | On site  | Full       | Full        | Full    | No coverage   | SP52SW    |
| 2  | On site  | Full       | Full        | Full    | No coverage   | SP52NW    |
| 3  | 60m E    | Full       | Full        | Full    | No coverage   | SP52NE    |

This data is sourced from the British Geological Survey.






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# Geology 1:10,000 scale - Artificial and made ground



## 14.2 Artificial and made ground (10k)

Records within 500m 18

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 122

| ID | Location | LEX Code   | Description               | Rock description   |
|----|----------|------------|---------------------------|--------------------|
| 1  | On site  | WGR-VOID   | Worked Ground (Undivided) | Void               |
| 2  | On site  | WMGR-ARTDP | Infilled Ground           | Artificial Deposit |
| 3  | On site  | WMGR-ARTDP | Infilled Ground           | Artificial Deposit |
| 4  | On site  | WGR-VOID   | Worked Ground (Undivided) | Void               |



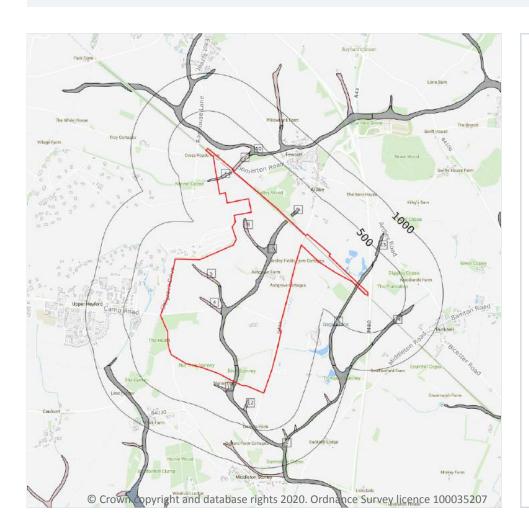


Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | LEX Code    | Description                   | Rock description           |
|----|----------|-------------|-------------------------------|----------------------------|
| 5  | On site  | WMGR-ARTDP  | Infilled Ground               | Artificial Deposit         |
| 6  | On site  | WGR-VOID    | Worked Ground (Undivided)     | Void                       |
| 7  | On site  | LSGR-UKNOWN | Landscaped Ground (Undivided) | Unknown/unclassified Entry |
| А  | 5m E     | MGR-ARTDP   | Made Ground (Undivided)       | Artificial Deposit         |
| 8  | 29m SW   | MGR-ARTDP   | Made Ground (Undivided)       | Artificial Deposit         |
| 9  | 42m S    | MGR-ARTDP   | Made Ground (Undivided)       | Artificial Deposit         |
| 10 | 48m NE   | WGR-VOID    | Worked Ground (Undivided)     | Void                       |
| Α  | 60m E    | MGR-ARTDP   | Made Ground (Undivided)       | Artificial Deposit         |
| 11 | 81m SE   | WGR-VOID    | Worked Ground (Undivided)     | Void                       |
| 12 | 203m N   | WMGR-ARTDP  | Infilled Ground               | Artificial Deposit         |
| 13 | 259m W   | WMGR-ARTDP  | Infilled Ground               | Artificial Deposit         |
| 14 | 330m NE  | WGR-VOID    | Worked Ground (Undivided)     | Void                       |
| 15 | 385m NW  | WMGR-ARTDP  | Infilled Ground               | Artificial Deposit         |
| 16 | 406m W   | WMGR-ARTDP  | Infilled Ground               | Artificial Deposit         |

This data is sourced from the British Geological Survey.






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

# Geology 1:10,000 scale - Superficial



Site Outline
Search buffers in metres (m)

Landslip (10k)

Superficial geology (10k) Please see table for more details.

## 14.3 Superficial geology (10k)

#### Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 124

| ID | Location | LEX Code | Description                    | Rock description      |
|----|----------|----------|--------------------------------|-----------------------|
| 1  | On site  | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 2  | On site  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 3  | On site  | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 4  | On site  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | LEX Code | Description                    | Rock description      |
|----|----------|----------|--------------------------------|-----------------------|
| 5  | On site  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 6  | On site  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 7  | On site  | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 8  | On site  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 9  | 65m NE   | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 10 | 77m NE   | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 11 | 111m SW  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 12 | 164m SW  | HEAD-XCZ | Head - Clay And Silt           | Clay And Silt         |
| 13 | 289m NE  | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |
| 14 | 471m SE  | ALV-CSV  | Alluvium - Sandy Gravelly Clay | Clay, Sandy, Gravelly |

This data is sourced from the British Geological Survey.

## 14.4 Landslip (10k)

**Records within 500m** 0

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

## Geology 1:10,000 scale - Bedrock



Site Outline

Search buffers in metres (m)

Bedrock faults and other linear features (10k)

Bedrock geology (10k) Please see table for more details.

## 14.5 Bedrock geology (10k)

#### Records within 500m 12

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 126

| ID | Location | LEX Code | Description                           | Rock age                     |
|----|----------|----------|---------------------------------------|------------------------------|
| 1  | On site  | WHL-LMST | White Limestone Formation - Limestone | Bathonian Age                |
| 3  | On site  | WHL-LMST | White Limestone Formation - Limestone | Bathonian Age                |
| 4  | On site  | FMB-LMST | Forest Marble Formation - Limestone   | Bathonian Age                |
| 6  | On site  | RLD-MDST | Rutland Formation - Mudstone          | Bathonian Age - Bajocian Age |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | LEX Code      | Description                                         | Rock age                     |
|----|----------|---------------|-----------------------------------------------------|------------------------------|
| 7  | On site  | BLAD-<br>MDLM | Bladon Member - Mudstone And Limestone, Interbedded | Bathonian Age                |
| 8  | 51m E    | BLAD-<br>MDLM | Bladon Member - Mudstone And Limestone, Interbedded | Bathonian Age                |
| 9  | 60m E    | WHL-LMST      | White Limestone Formation - Limestone               | Bathonian Age                |
| 10 | 60m E    | BLAD-<br>MDLM | Bladon Member - Mudstone And Limestone, Interbedded | Bathonian Age                |
| 11 | 67m SE   | FMB-LMST      | Forest Marble Formation - Limestone                 | Bathonian Age                |
| 12 | 141m SE  | FMB-LMST      | Forest Marble Formation - Limestone                 | Bathonian Age                |
| 13 | 178m S   | FMB-LMST      | Forest Marble Formation - Limestone                 | Bathonian Age                |
| 14 | 181m N   | RLD-MDST      | Rutland Formation - Mudstone                        | Bathonian Age - Bajocian Age |

This data is sourced from the British Geological Survey.

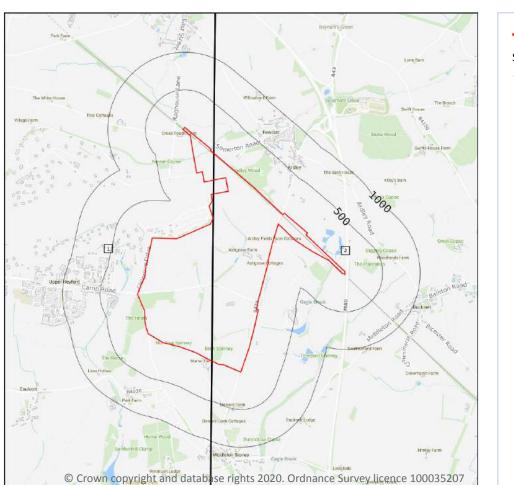
### 14.6 Bedrock faults and other linear features (10k)

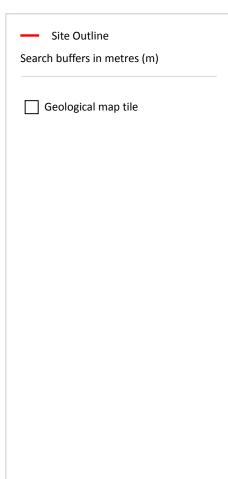
| Records within 500m | 2 |
|---------------------|---|
| Records within 500m | 2 |

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 126

| ID | Location | Category | Description                                          |
|----|----------|----------|------------------------------------------------------|
| 2  | On site  | FAULT    | Normal fault, inferred; crossmarks on downthrow side |
| 5  | On site  | FAULT    | Normal fault, inferred; crossmarks on downthrow side |




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 15 Geology 1:50,000 scale - Availability





### 15.1 50k Availability

### Records within 500m 2

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 128

| ID | Location | Artificial | Superficial | Bedrock | Mass movement | Sheet No.                |
|----|----------|------------|-------------|---------|---------------|--------------------------|
| 1  | On site  | Full       | Full        | Full    | Full          | EW218_chipping_norton_v4 |
| 2  | On site  | Full       | Full        | Full    | Full          | EW219_buckingham_v4      |





**Your ref**: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## Geology 1:50,000 scale - Artificial and made ground



## 15.2 Artificial and made ground (50k)

#### Records within 500m 7

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 129

| ID | Location | LEX Code       | Description                   | Rock description             |
|----|----------|----------------|-------------------------------|------------------------------|
| 1  | On site  | WMGR-ARTDP     | INFILLED GROUND               | ARTIFICIAL DEPOSIT           |
| 2  | On site  | LSGR-ARTGR     | LANDSCAPED GROUND (UNDIVIDED) | ARTIFICIALLY MODIFIED GROUND |
| 2  | On site  | 14/84CD 4 DTDD | INELLED COOLING               |                              |
| 3  | On site  | WMGR-ARTDP     | INFILLED GROUND               | ARTIFICIAL DEPOSIT           |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | LEX Code   | Description               | Rock description   |
|----|----------|------------|---------------------------|--------------------|
| 5  | 3m NE    | WMGR-ARTDP | INFILLED GROUND           | ARTIFICIAL DEPOSIT |
| 6  | 20m SW   | MGR-ARTDP  | MADE GROUND (UNDIVIDED)   | ARTIFICIAL DEPOSIT |
| 7  | 49m NE   | WGR-VOID   | WORKED GROUND (UNDIVIDED) | VOID               |

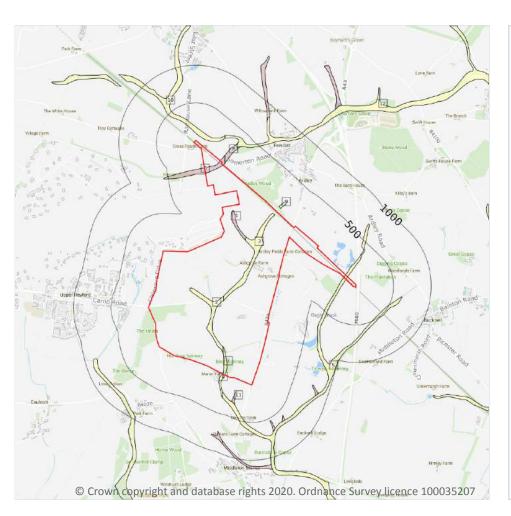
This data is sourced from the British Geological Survey.

### 15.3 Artificial ground permeability (50k)

Records within 50m 5

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

| Location | Flow type | Maximum permeability | Minimum permeability |
|----------|-----------|----------------------|----------------------|
| On site  | Mixed     | Very High            | Low                  |
| On site  | Mixed     | Very High            | Low                  |
| On site  | Mixed     | Very High            | Low                  |
| 3m N     | Mixed     | Very High            | Low                  |
| 20m E    | Mixed     | Very High            | Low                  |






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## Geology 1:50,000 scale - Superficial



Search buffers in metres (m)

Landslip (50k)

Superficial geology (50k)

Please see table for more details.

## 15.4 Superficial geology (50k)

#### Records within 500m 12

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 131

| ID | Location | LEX Code  | Description | Rock description            |
|----|----------|-----------|-------------|-----------------------------|
| 1  | On site  | ALV-XCZSV | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL |
| 2  | On site  | ALV-XCZSV | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL |
| 3  | On site  | ALV-XCZSV | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location         | LEX Code           | Description | Rock description                                         |
|----|------------------|--------------------|-------------|----------------------------------------------------------|
| 4  | On site          | HEAD-<br>XCZSV     | HEAD        | CLAY, SILT, SAND AND GRAVEL                              |
| 5  | On site          | ALV-XCZSV          | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL                              |
| 6  | On site          | HEAD-<br>XCZSV     | HEAD        | CLAY, SILT, SAND AND GRAVEL                              |
| 7  | On site          | ALV-XCZSV          | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL                              |
| 0  |                  |                    | HEAD        | CLAY CHT CAND AND CDAYE                                  |
| 8  | 28m NE           | HEAD-<br>XCZSV     | NEAD        | CLAY, SILT, SAND AND GRAVEL                              |
| 9  | 28m NE<br>67m NE |                    | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL  CLAY, SILT, SAND AND GRAVEL |
|    |                  | XCZSV              |             |                                                          |
| 9  | 67m NE           | XCZSV<br>ALV-XCZSV | ALLUVIUM    | CLAY, SILT, SAND AND GRAVEL                              |

This data is sourced from the British Geological Survey.

## 15.5 Superficial permeability (50k)

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

| Location | Flow type     | Maximum permeability | Minimum permeability |
|----------|---------------|----------------------|----------------------|
| On site  | Intergranular | High                 | Very Low             |
| On site  | Mixed         | High                 | Very Low             |
| On site  | Mixed         | High                 | Very Low             |
| On site  | Intergranular | High                 | Very Low             |
| On site  | Intergranular | High                 | Very Low             |





Your ref: Oxfordshire, Railfreight, Interchange

0

**Grid ref**: 453276 226189

### 15.6 Landslip (50k)

Records within 500m

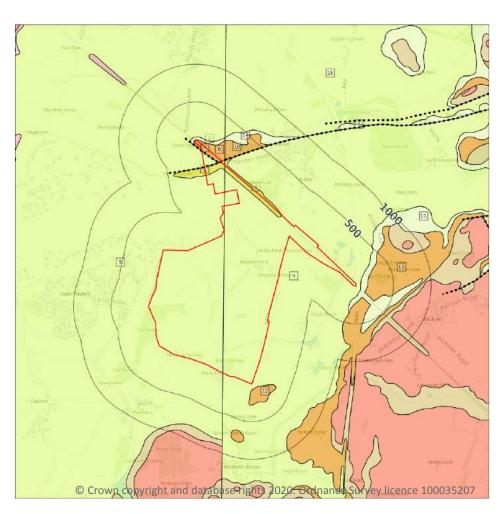
Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

### 15.7 Landslip permeability (50k)

Records within 50m 0

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

## Geology 1:50,000 scale - Bedrock



Site Outline

Search buffers in metres (m)

Bedrock faults and other linear features (50k)

Bedrock geology (50k) Please see table for more details.

## 15.8 Bedrock geology (50k)

#### Records within 500m 12

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 134

| ID | Location | LEX Code      | Description                                         | Rock age  |
|----|----------|---------------|-----------------------------------------------------|-----------|
| 1  | On site  | RLD-MDST      | RUTLAND FORMATION - MUDSTONE                        | BAJOCIAN  |
| 3  | On site  | BLAD-<br>MDLM | BLADON MEMBER - MUDSTONE AND LIMESTONE, INTERBEDDED | BATHONIAN |
| 4  | On site  | WHL-LMST      | WHITE LIMESTONE FORMATION - LIMESTONE               | BATHONIAN |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | LEX Code      | Description                                         | Rock age  |
|----|----------|---------------|-----------------------------------------------------|-----------|
| 5  | On site  | WHL-LMST      | WHITE LIMESTONE FORMATION - LIMESTONE               | BATHONIAN |
| 7  | On site  | RLD-MDST      | RUTLAND FORMATION - MUDSTONE                        | BAJOCIAN  |
| 8  | On site  | FMB-LMST      | FOREST MARBLE FORMATION - LIMESTONE                 | BATHONIAN |
| 10 | 39m NE   | FMB-LMST      | FOREST MARBLE FORMATION - LIMESTONE                 | BATHONIAN |
| 11 | 63m E    | BLAD-<br>MDLM | BLADON MEMBER - MUDSTONE AND LIMESTONE, INTERBEDDED | BATHONIAN |
| 12 | 69m SE   | FMB-LMST      | FOREST MARBLE FORMATION - LIMESTONE                 | BATHONIAN |
| 13 | 137m SE  | FMB-LMST      | FOREST MARBLE FORMATION - LIMESTONE                 | BATHONIAN |
| 14 | 238m NE  | BLAD-<br>MDLM | BLADON MEMBER - MUDSTONE AND LIMESTONE, INTERBEDDED | BATHONIAN |
| 15 | 266m NE  | WHL-LMST      | WHITE LIMESTONE FORMATION - LIMESTONE               | BATHONIAN |

This data is sourced from the British Geological Survey.

## 15.9 Bedrock permeability (50k)

| Records within 50m | 7 |
|--------------------|---|
|--------------------|---|

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

| Location | Flow type | Maximum permeability | Minimum permeability |
|----------|-----------|----------------------|----------------------|
| On site  | Fracture  | Low                  | Very Low             |
| On site  | Fracture  | High                 | High                 |
| On site  | Fracture  | High                 | Very Low             |
| On site  | Fracture  | Very High            | Very High            |
| On site  | Fracture  | Very High            | Very High            |
| On site  | Fracture  | Very High            | Low                  |
| On site  | Fracture  | Very High            | Low                  |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

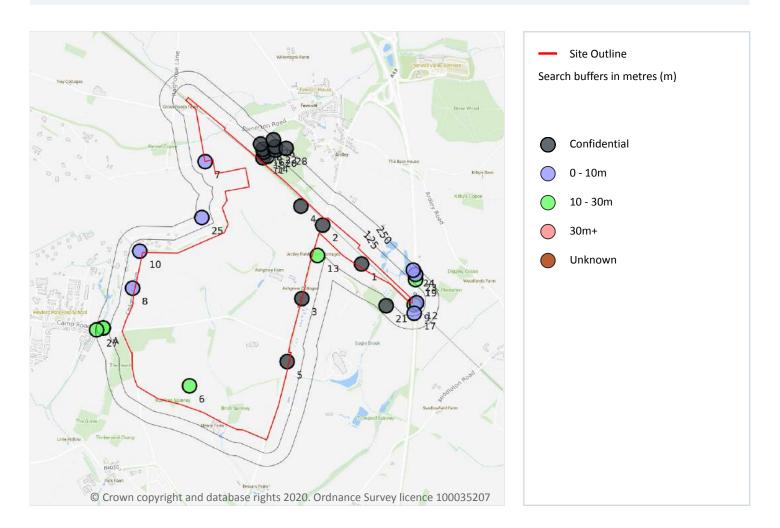
### 15.10 Bedrock faults and other linear features (50k)

Records within 500m 3

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 134

| ID | Location | Category | Description     |
|----|----------|----------|-----------------|
| 2  | On site  | FAULT    | Fault, inferred |
| 6  | On site  | FAULT    | Fault, inferred |
| 9  | 39m NE   | FAULT    | Fault, inferred |






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

### 16 Boreholes



#### 16.1 BGS Boreholes

Records within 250m 32

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 137

| ID | Location | Grid reference | Name               | Length | Confidential | Web link |
|----|----------|----------------|--------------------|--------|--------------|----------|
| 1  | On site  | 454460 226310  | ARDLEY FIELDS NO.1 | -      | Υ            | N/A      |
| 2  | On site  | 454090 226680  | ARDLEY FIELDS NO.2 | -      | Υ            | N/A      |
| 3  | On site  | 453890 225980  | ARDLEY FIELDS NO.4 | -      | Υ            | N/A      |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Grid reference | Name                                                | Length | Confidential | Web link        |
|----|----------|----------------|-----------------------------------------------------|--------|--------------|-----------------|
|    |          |                |                                                     | Length | Y            |                 |
| 4  | On site  | 453880 226860  | ARDLEY FIELDS NO.9                                  | -      | Y            | N/A<br>N/A      |
| 5  |          | 453750 225380  | ARDLEY FIELDS NO.7                                  | -      | -            | -               |
| 6  | On site  | 452820 225150  | MANOR FARM MIDDLETON STONEY                         | 18.28  | N            | 336693          |
| 7  | 3m S     | 452970 227280  | RAF UPPER HEYFORD OXFORDSHIRE 24                    | 1.5    | N            | 15951659        |
| 8  | 24m W    | 452280 226080  | RAF UPPER HEYFORD OXFORDSHIRE 37                    | 1.51   | N            | 15951662        |
| 9  | 27m SE   | 454960 225920  | BUCKNELL EMBKMENT E11 24000-24570 BHY3              | 19.0   | N            | 336467          |
| 10 | 29m NW   | 452350 226430  | RAF UPPER HEYFORD OXFORDSHIRE 32                    | 0.9    | N            | <u>15951661</u> |
| 11 | 37m NE   | 453520 227320  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY RNG29      | -      | Υ            | N/A             |
| 12 | 40m E    | 454980 225940  | BUCKNELL EMBKMENT E11 24000-24570 TP534             | 1.0    | N            | 336468          |
| 13 | 49m E    | 454040 226390  | ARDLEY FIELDS                                       | 10.2   | N            | 336639          |
| 14 | 71m NE   | 453560 227330  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY RNG28      | -      | Υ            | N/A             |
| 15 | 82m NE   | 453530 227370  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG35       | -      | Υ            | N/A             |
| 16 | 98m NE   | 453520 227400  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG36       | -      | Υ            | N/A             |
| 17 | 100m S   | 454960 225840  | BUCKNELL EMBKMENT E11 24000-24570 TP531             | 4.0    | N            | 336466          |
| 18 | 123m NE  | 453500 227450  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG37/RNG37 | -      | Υ            | N/A             |
| 19 | 158m NE  | 454970 226160  | BUCKNELL EMBKMENT E11 24000-24570 BH069             | 20.0   | N            | 336469          |
| 20 | 168m NE  | 453640 227390  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG27/RNG27 | -      | Υ            | N/A             |
| 21 | 177m SW  | 454690 225910  | ARDLEY FIELDS NO.3                                  | -      | Υ            | N/A             |
| А  | 185m W   | 452000 225700  | UPPER HEYFORD AERODROME                             | 19.81  | N            | 336692          |
| Α  | 185m W   | 452000 225700  | RAF UPPER HEYFORD OXON 218/33C                      | 18.29  | N            | 336641          |
| А  | 185m W   | 452000 225700  | RAF UPPER HEYFORD OXON 218/33D                      | 19.81  | N            | <u>336642</u>   |
| Α  | 185m W   | 452000 225700  | UPPER HEYFORD AERODROME                             | 18.29  | N            | 336691          |
| 22 | 191m NE  | 453640 227420  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG33       | -      | Υ            | N/A             |
| 23 | 194m NE  | 454970 226210  | BUCKNELL EMBKMENT E11 24000-24570 TP537             | 1.0    | N            | 336470          |
| 24 | 209m NE  | 454950 226250  | BUCKNELL EMBKMENT E11 24000-24570 TP536             | 1.0    | N            | 336471          |



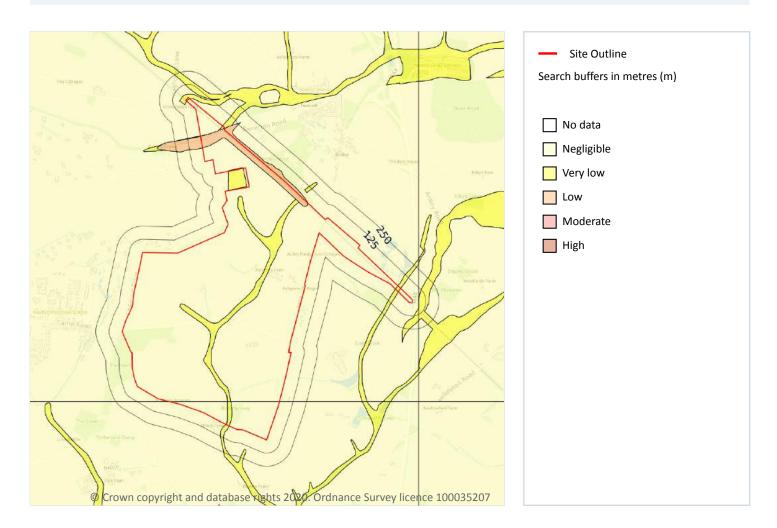




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Grid reference | Name                                                | Length | Confidential | Web link        |
|----|----------|----------------|-----------------------------------------------------|--------|--------------|-----------------|
| 25 | 214m W   | 452940 226750  | RAF UPPER HEYFORD OXFORDSHIRE 28                    | 1.11   | N            | <u>15951660</u> |
| 26 | 231m NE  | 453620 227490  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG34       | -      | Υ            | N/A             |
| 27 | 242m W   | 451940 225680  | UPPER HEYFORD AERODROME                             | 26.82  | N            | 336450          |
| 28 | 248m NE  | 453740 227410  | CLOSED LANDFILL SITES OXFORDSHIRE ARDLEY NG26/RNG26 | -      | Υ            | N/A             |






**Your ref**: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 17 Natural ground subsidence - Shrink swell clays



### 17.1 Shrink swell clays

Records within 50m 3

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 140

| Location | Hazard rating | Details                                            |
|----------|---------------|----------------------------------------------------|
| On site  | Negligible    | Ground conditions predominantly non-plastic.       |
| On site  | Very low      | Ground conditions predominantly low plasticity.    |
| On site  | Low           | Ground conditions predominantly medium plasticity. |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from the British Geological Survey.



info@groundsure.com 08444 159 000



Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

## Natural ground subsidence - Running sands



### 17.2 Running sands

Records within 50m 4

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 142

| Location | Hazard rating | Details                                                                                                                                                      |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Negligible    | Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions. |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Hazard rating | Details                                                                                                                                 |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Very low      | Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly. |
|          |               | Durantee and an ditions was be assessed Constraints was analyte land was involving assessation                                          |
| On site  | Low           | Running sand conditions may be present. Constraints may apply to land uses involving excavation or the addition or removal of water.    |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## Natural ground subsidence - Compressible deposits



### 17.3 Compressible deposits

Records within 50m 4

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 144

| Location | Hazard rating | Details                                                                                                                                                    |
|----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Negligible    | Compressible strata are not thought to occur.                                                                                                              |
| On site  | Moderate      | Compressibility and uneven settlement hazards are probably present. Land use should consider specifically the compressibility and variability of the site. |

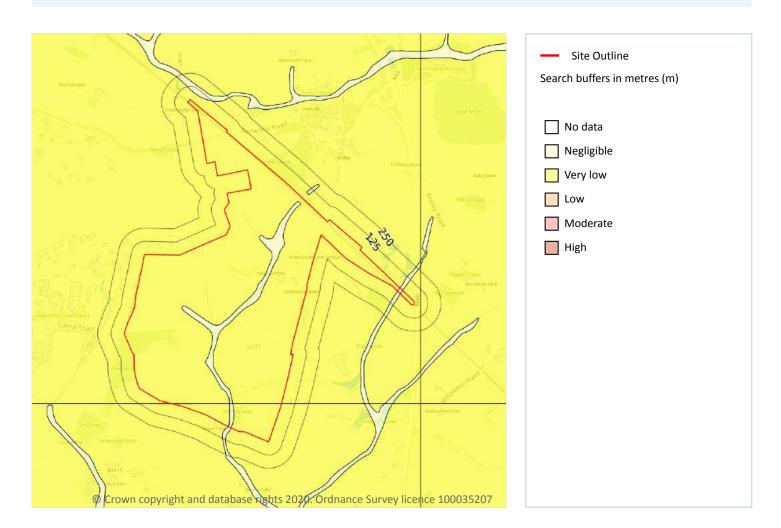




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Hazard rating | Details                                                                                                                                                    |
|----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3m NE    | Moderate      | Compressibility and uneven settlement hazards are probably present. Land use should consider specifically the compressibility and variability of the site. |
| 20m SW   | Very low      | Compressibility and uneven settlement problems are not likely to be significant on the site for most land uses.                                            |






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

## Natural ground subsidence - Collapsible deposits



### 17.4 Collapsible deposits

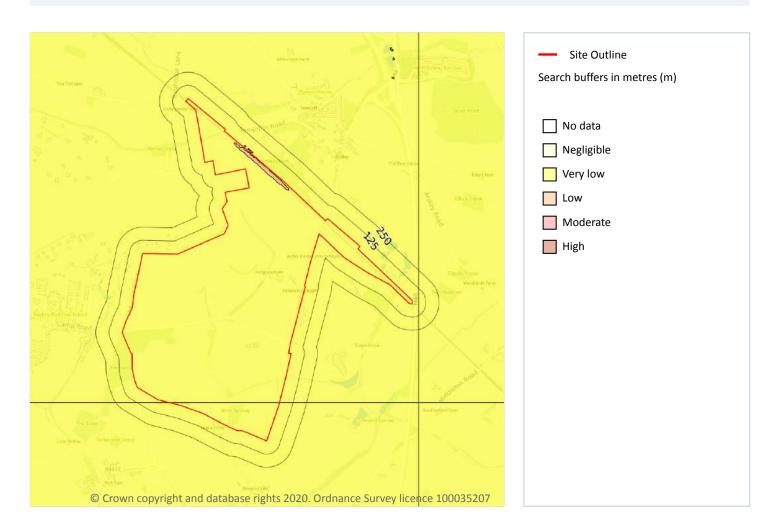
Records within 50m 2

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 146

| Location | Hazard rating | Details                                                                                       |
|----------|---------------|-----------------------------------------------------------------------------------------------|
| On site  | Negligible    | Deposits with potential to collapse when loaded and saturated are believed not to be present. |
| On site  | Very low      | Deposits with potential to collapse when loaded and saturated are unlikely to be present.     |

This data is sourced from the British Geological Survey.






Your ref: Oxfordshire, Railfreight, Interchange

Grid ref: 453276 226189

## Natural ground subsidence - Landslides



#### 17.5 Landslides

Records within 50m 4

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 147

| Location | Hazard rating | Details                                                                                                                                                         |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Very low      | Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered. |

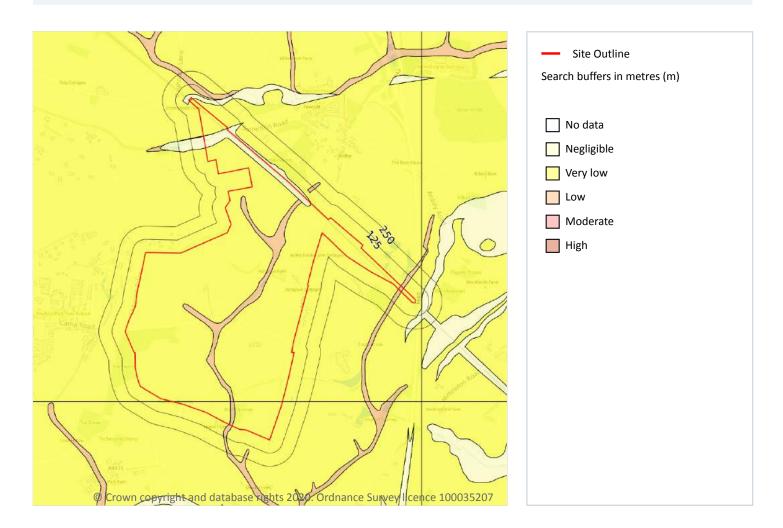




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Hazard rating | Details                                                                                                                                    |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Low           | Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site. |
| 6m NE    | Low           | Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site. |
| 9m NE    | Low           | Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site. |






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# Natural ground subsidence - Ground dissolution of soluble rocks



### 17.6 Ground dissolution of soluble rocks

Records within 50m 3

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on **page** 149

| Location | Hazard rating | Details                                                                                                                                             |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Negligible    | Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present. |



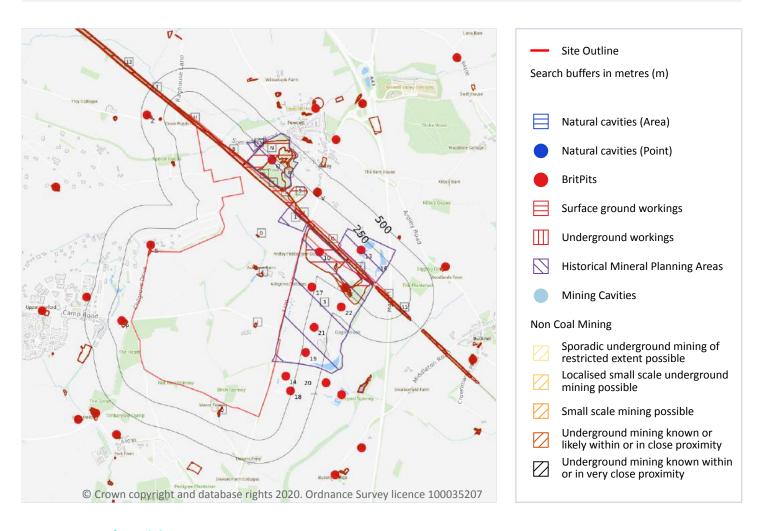




Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Hazard rating | Details                                                                                                                                                                                                                                                        |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On site  | Very low      | Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.                                            |
| On site  | Low           | Soluble rocks are present within the ground. Some dissolution features may be present. Potential for difficult ground conditions are at a level where they may be considered, localised subsidence need not be considered except in exceptional circumstances. |






Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 18 Mining, ground workings and natural cavities



#### 18.1 Natural cavities

Records within 500m 0

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Peter Brett Associates (PBA).





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

#### 18.2 BritPits

Records within 500m 17

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

Features are displayed on the Mining, ground workings and natural cavities map on page 151

| ID | Location | Details                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                           |
|----|----------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 31m SW   | Name: Ardley Quarry<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                 | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| S  | 72m N    | Name: North Leys Farm<br>Address: Upper Heyford, OXFORD, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased          | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| Р  | 101m W   | Name: Leys Farm<br>Address: Upper Heyford, OXFORD, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| 13 | 139m NE  | Name: Ardley Quarry Extension<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased       | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| 14 | 144m E   | Name: Dewar's Farm Quarry<br>Address: Middleton Stoney, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Active | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which is actively extracting mineral products, or in the case of wharfs and rail depots, is actively handing minerals                                                                                     |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Details                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                           |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | 157m NE  | Name: Ardley Quarry Extension<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                    | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| U  | 200m SW  | Name: Ardley Fields Farm<br>Address: Bucknell, OXFORD, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                         | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| U  | 209m SW  | Name: Ardley Fields Farm<br>Address: Bucknell, OXFORD, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                         | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| 0  | 214m NE  | Name: Ardley Woods<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                               | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| 17 | 217m E   | Name: Ardley Quarry<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                              | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority |
| 18 | 237m E   | Name: Dewar's Farm Quarry<br>Address: Middleton Stoney, BICESTER, Oxfordshire<br>Commodity: Incinerator Bottom Ash<br>Status: Active | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which is actively extracting mineral products, or in the case of wharfs and rail depots, is actively handing minerals                                                                                     |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Details                                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                       |
|----|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V  | 285m NE  | Name: Manor Farm Address: Ardley, OXFORD, Oxfordshire Commodity: Limestone Status: Ceased                                 | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority                                             |
| 19 | 298m E   | Name: Ardley Quarry<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                   | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority                                             |
| 20 | 301m E   | Name: Dewar's Farm Quarry<br>Address: Middleton Stoney, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Inactive | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, is not extracting minerals, but which still has a valid planning permission to do so, and can restart at any time. May be considered Mothballed by operator. May be considered to have Active or Dormant planning permission |
| 21 | 349m E   | Name: Ardley Quarry<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                   | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority                                             |
| 22 | 398m SW  | Name: Ardley Quarry<br>Address: Ardley, BICESTER, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                   | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority                                             |
| Z  | 435m W   | Name: Troy Farm<br>Address: Ardley, OXFORD, Oxfordshire<br>Commodity: Limestone<br>Status: Ceased                         | Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority                                             |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

### **18.3 Surface ground workings**

Records within 250m 71

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 151

| ID | Location | Land Use           | Year of mapping | Mapping scale |
|----|----------|--------------------|-----------------|---------------|
| 4  | On site  | Cuttings           | 1923            | 1:10560       |
| 5  | On site  | Cuttings           | 1954            | 1:10560       |
| 6  | On site  | Cuttings           | 1923            | 1:10560       |
| 7  | On site  | Unspecified Quarry | 1992            | 1:10000       |
| 8  | On site  | Unspecified Pit    | 1880            | 1:10560       |
| Α  | On site  | Cuttings           | 1923            | 1:10560       |
| Α  | On site  | Cuttings           | 1923            | 1:10560       |
| В  | On site  | Cuttings           | 1980            | 1:10000       |
| В  | On site  | Cuttings           | 1992            | 1:10000       |
| В  | On site  | Cuttings           | 1954            | 1:10560       |
| С  | On site  | Cuttings           | 1980            | 1:10000       |
| С  | On site  | Cuttings           | 1992            | 1:10000       |
| С  | On site  | Cuttings           | 1954            | 1:10560       |
| D  | On site  | Pond               | 1923            | 1:10560       |
| D  | On site  | Pond               | 1880            | 1:10560       |
| E  | On site  | Pond               | 1923            | 1:10560       |
| E  | On site  | Pond               | 1954            | 1:10560       |
| E  | On site  | Pond               | 1898            | 1:10560       |
| E  | On site  | Pond               | 1923            | 1:10560       |
| E  | On site  | Pond               | 1880            | 1:10560       |
| F  | On site  | Cuttings           | 1980            | 1:10000       |
| F  | On site  | Cuttings           | 1992            | 1:10000       |
| F  | On site  | Cuttings           | 1954            | 1:10560       |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID                      | Location                                                                               | Land Use                                                                                                                                                                                           | Year of mapping                                                        | Mapping scale                                                                                   |
|-------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| G                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1980                                                                   | 1:10000                                                                                         |
| G                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1992                                                                   | 1:10000                                                                                         |
| G                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1954                                                                   | 1:10560                                                                                         |
| Н                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1980                                                                   | 1:10000                                                                                         |
| Н                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1992                                                                   | 1:10000                                                                                         |
| Н                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1954                                                                   | 1:10560                                                                                         |
| I                       | On site                                                                                | Covered Reservoir                                                                                                                                                                                  | 1980                                                                   | 1:10000                                                                                         |
| I                       | On site                                                                                | Covered Reservoir                                                                                                                                                                                  | 1992                                                                   | 1:10000                                                                                         |
| J                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1980                                                                   | 1:10000                                                                                         |
| J                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1992                                                                   | 1:10000                                                                                         |
| K                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1980                                                                   | 1:10000                                                                                         |
| K                       | On site                                                                                | Cuttings                                                                                                                                                                                           | 1992                                                                   | 1:10000                                                                                         |
| L                       | On site                                                                                | Unspecified Pit                                                                                                                                                                                    | 1923                                                                   | 1:10560                                                                                         |
| L                       | On site                                                                                | Refuse Heap                                                                                                                                                                                        | 1880                                                                   | 1:10560                                                                                         |
|                         | 011 0110                                                                               | normod noup                                                                                                                                                                                        | 1000                                                                   |                                                                                                 |
| M                       | On site                                                                                | Unspecified Disused Quarry                                                                                                                                                                         | 1980                                                                   | 1:10000                                                                                         |
|                         |                                                                                        |                                                                                                                                                                                                    |                                                                        |                                                                                                 |
| M                       | On site                                                                                | Unspecified Disused Quarry                                                                                                                                                                         | 1980                                                                   | 1:10000                                                                                         |
| M                       | On site                                                                                | Unspecified Disused Quarry Refuse Heap                                                                                                                                                             | <b>1980</b> 1980                                                       | <b>1:10000</b><br>1:10000                                                                       |
| M<br>N<br>N             | On site  19m NE  19m NE                                                                | Unspecified Disused Quarry Refuse Heap Refuse Heap                                                                                                                                                 | 1980<br>1980<br>1992                                                   | 1:10000<br>1:10000<br>1:10000                                                                   |
| M<br>N<br>N             | On site  19m NE  19m NE  21m SW                                                        | Unspecified Disused Quarry Refuse Heap Refuse Heap Pond                                                                                                                                            | 1980<br>1980<br>1992<br>1980                                           | 1:10000<br>1:10000<br>1:10000                                                                   |
| M<br>N<br>N<br>M        | On site  19m NE  19m NE  21m SW                                                        | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond                                                                                                                                   | 1980<br>1980<br>1992<br>1980<br>1992                                   | 1:10000<br>1:10000<br>1:10000<br>1:10000                                                        |
| M<br>N<br>N<br>M<br>M   | On site  19m NE  19m NE  21m SW  21m SW  22m NE                                        | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry                                                                                                           | 1980<br>1980<br>1992<br>1980<br>1992<br>1898                           | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560                                             |
| M<br>N<br>N<br>M<br>M   | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W                                 | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry  Unspecified Quarry                                                                                       | 1980<br>1980<br>1992<br>1980<br>1992<br>1898                           | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560<br>1:10560                                  |
| M N N M P Q             | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W  42m SW                         | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Unspecified Old Quarry  Unspecified Quarry  Pond                                                                                       | 1980<br>1980<br>1992<br>1980<br>1992<br>1898<br>1954                   | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560<br>1:10560                                  |
| M N N M P Q R           | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W  42m SW  43m NE                 | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry  Unspecified Quarry  Pond  Unspecified Quarry                                                             | 1980<br>1980<br>1992<br>1980<br>1992<br>1898<br>1954<br>1898           | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560<br>1:10560<br>1:10560<br>1:10000            |
| M N N M M P Q R R       | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W  42m SW  43m NE                 | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry  Unspecified Quarry  Pond  Unspecified Disused Quarry  Unspecified Disused Quarry                         | 1980 1980 1992 1980 1992 1898 1954 1898 1980 1992                      | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560<br>1:10560<br>1:10560<br>1:10000            |
| M N N M M 9 P Q R R Q   | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W  42m SW  43m NE  43m NE  44m SW | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry  Unspecified Quarry  Pond  Unspecified Disused Quarry  Unspecified Disused Quarry  Pond                   | 1980  1980  1992  1980  1992  1898  1954  1898  1980  1992  1981       | 1:10000<br>1:10000<br>1:10000<br>1:10000<br>1:10560<br>1:10560<br>1:10560<br>1:10000<br>1:10000 |
| M N N M M 9 P Q R R Q Q | On site  19m NE  19m NE  21m SW  21m SW  22m NE  40m W  42m SW  43m NE  44m SW  44m SW | Unspecified Disused Quarry  Refuse Heap  Refuse Heap  Pond  Pond  Unspecified Old Quarry  Unspecified Quarry  Pond  Unspecified Disused Quarry  Unspecified Disused Quarry  Pond  Pond  Pond  Pond | 1980  1980  1992  1980  1992  1898  1954  1898  1980  1992  1981  1954 | 1:10000 1:10000 1:10000 1:10000 1:10560 1:10560 1:10000 1:10000 1:10000 1:10560                 |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| ID | Location | Land Use             | Year of mapping | Mapping scale |
|----|----------|----------------------|-----------------|---------------|
| S  | 53m N    | Unspecified Pit      | 1923            | 1:10560       |
| S  | 56m N    | Unspecified Pit      | 1923            | 1:10560       |
| S  | 56m N    | Unspecified Quarry   | 1898            | 1:10560       |
| S  | 60m N    | Unspecified Pit      | 1954            | 1:10560       |
| Α  | 70m SE   | Cuttings             | 1992            | 1:10000       |
| Q  | 77m SW   | Pond                 | 1919            | 1:10560       |
| Q  | 77m SW   | Pond                 | 1923            | 1:10560       |
| Q  | 77m SW   | Pond                 | 1875            | 1:10560       |
| Р  | 78m W    | Unspecified Quarry   | 1898            | 1:10560       |
| Р  | 81m W    | Sand Pit             | 1880            | 1:10560       |
| 11 | 87m SE   | Cuttings             | 1950            | 1:10560       |
| 12 | 136m NW  | Cuttings             | 1954            | 1:10560       |
| Т  | 136m NW  | Cuttings             | 1980            | 1:10000       |
| Т  | 136m NW  | Cuttings             | 1992            | 1:10000       |
| U  | 180m SW  | Unspecified Pit      | 1923            | 1:10560       |
| U  | 184m SW  | Unspecified Quarry   | 1923            | 1:10560       |
| U  | 184m SW  | Unspecified Quarries | 1898            | 1:10560       |
| U  | 185m SW  | Unspecified Quarry   | 1923            | 1:10560       |
| U  | 188m SW  | Unspecified Quarry   | 1954            | 1:10560       |
| U  | 216m SW  | Sand Pit             | 1880            | 1:10560       |

This is data is sourced from Ordnance Survey/Groundsure.

## **18.4 Underground workings**

Records within 1000m 0

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.





Your ref: Oxfordshire, Railfreight, Interchange

5

**Grid ref**: 453276 226189

### **18.5 Historical Mineral Planning Areas**

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

Features are displayed on the Mining, ground workings and natural cavities map on page 151

| ID | Location | Site Name     | Mineral   | Туре                    | Planning<br>Status | Planning<br>Status Date |
|----|----------|---------------|-----------|-------------------------|--------------------|-------------------------|
| 1  | On site  | Ardley Fields | Limestone | Surface mineral working | Valid              | 17/1/51                 |
| 2  | On site  | Ardley Fields | Limestone | Surface mineral working | Valid              | 17/1/51                 |
| 3  | On site  | Ardley Fields | Limestone | Surface mineral working | Valid              | 17/1/51                 |
| 0  | 23m NE   | Ardley Woods  | Limestone | Surface mineral working | Valid              | 17/1/51                 |
| 15 | 152m NE  | Ardley Woods  | Limestone | Surface mineral working | Refused            | Not available           |

This data is sourced from the British Geological Survey.

### 18.6 Non-coal mining

Records within 1000m 0

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

This data is sourced from the British Geological Survey.

### **18.7 Mining cavities**

Records within 1000m 0

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Peter Brett Associates (PBA).





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

### 18.8 JPB mining areas

Records on site 0

Areas which could be affected by former coal mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

### 18.9 Coal mining

Records on site 0

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

#### 18.10 Brine areas

Records on site 0

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

### 18.11 Gypsum areas

Records on site 0

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

#### 18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Mining Searches UK.





Your ref: Oxfordshire, Railfreight, Interchange

0

**Grid ref**: 453276 226189

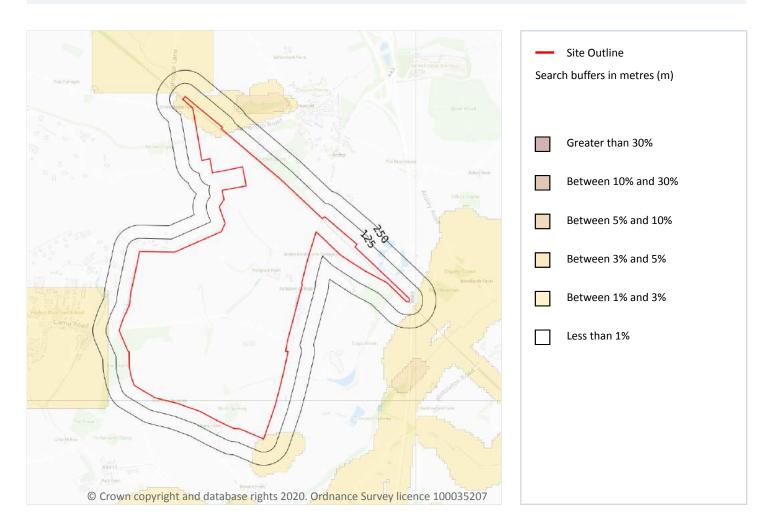
### 18.13 Clay mining

Records on site

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).








Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

## 19 Radon



### **19.1** Radon

Records on site 2

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 161

| Location | Estimated properties affected | Radon Protection Measures required |
|----------|-------------------------------|------------------------------------|
| On site  | Between 1% and 3%             | None                               |
| On site  | Less than 1%                  | None**                             |







Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from the British Geological Survey and Public Health England.





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 20 Soil chemistry

### 20.1 BGS Estimated Background Soil Chemistry

Records within 50m 111

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |





**Your ref**: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 30 - 45 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 30 - 45 mg/kg |





**Your ref**: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 30 - 45 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 30 - 45 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

| Location | Arsenic       | Bioaccessible<br>Arsenic | Lead      | Bioaccessible<br>Lead | Cadmium   | Chromium      | Nickel        |
|----------|---------------|--------------------------|-----------|-----------------------|-----------|---------------|---------------|
| On site  | 15 mg/kg      | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 17m N    | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 18m N    | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 24m NE   | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 28m N    | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 35m SW   | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 35m SW   | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 39m N    | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 15 - 30 mg/kg |
| 50m E    | 15 - 25 mg/kg | No data                  | 100 mg/kg | 60 mg/kg              | 1.8 mg/kg | 60 - 90 mg/kg | 30 - 45 mg/kg |

This data is sourced from the British Geological Survey.

### **20.2 BGS Estimated Urban Soil Chemistry**

Records within 50m 0

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

This data is sourced from the British Geological Survey.

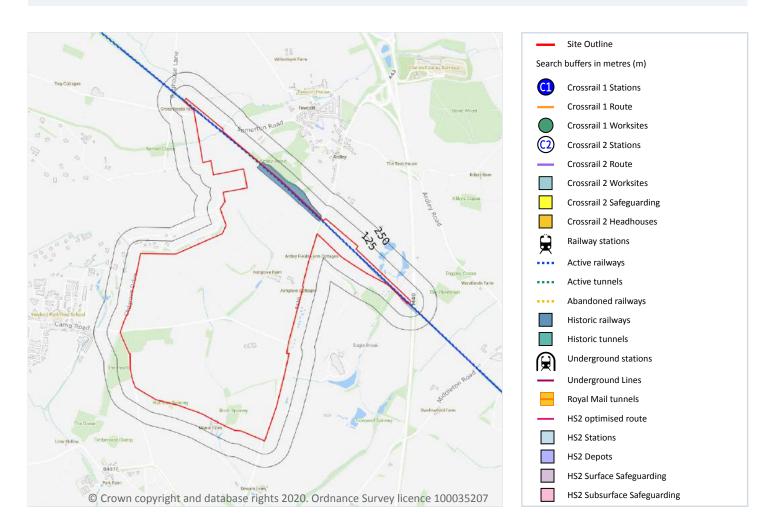
### 20.3 BGS Measured Urban Soil Chemistry

Records within 50m 0

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km<sup>2</sup>.

This data is sourced from the British Geological Survey.








Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

# 21 Railway infrastructure and projects



# 21.1 Underground railways (London)

Records within 250m 0

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

## 21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.





Your ref: Oxfordshire, Railfreight, Interchange

**Grid ref**: 453276 226189

This data is sourced from publicly available information by Groundsure.

### 21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

### 21.4 Historical railway and tunnel features

Records within 250m 6

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

Features are displayed on the Railway infrastructure and projects map on page 170

| Location | Land Use        | Year of mapping | Mapping scale |
|----------|-----------------|-----------------|---------------|
| On site  | Railway Sidings | 1975            | 2500          |
| On site  | Railway Sidings | 1974            | 2500          |
| On site  | Railway Sidings | 1922            | 2500          |
| On site  | Railway Sidings | 1923            | 10560         |
| On site  | Railway Sidings | 1954            | 10560         |
| 14m NE   | Railway Sidings | 1922            | 2500          |

This data is sourced from Ordnance Survey/Groundsure.

### 21.5 Royal Mail tunnels

Records within 250m 0

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

This data is sourced from Groundsure/the Postal Museum.





Your ref: Oxfordshire, Railfreight, Interchange

0

**Grid ref**: 453276 226189

### **21.6** Historical railways

Records within 250m

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines

This data is sourced from OpenStreetMap.

### 21.7 Railways

Records within 250m 12

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. Features are displayed on the Railway infrastructure and projects map on **page 170** 

| Location | Name               | Туре        |
|----------|--------------------|-------------|
| On site  | Chiltern Main Line | rail        |
| On site  | Chiltern Main Line | rail        |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| On site  | Not given          | Multi Track |
| 72m SE   | Not given          | Multi Track |
| 153m NW  | Not given          | Multi Track |

This data is sourced from Ordnance Survey and OpenStreetMap.

### 21.8 Crossrail 1

Records within 500m 0

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.





Your ref: Oxfordshire, Railfreight, Interchange

0

**Grid ref**: 453276 226189

### 21.9 Crossrail 2

Records within 500m 0

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

### 21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.





Your ref: Oxfordshire, Railfreight, Interchange

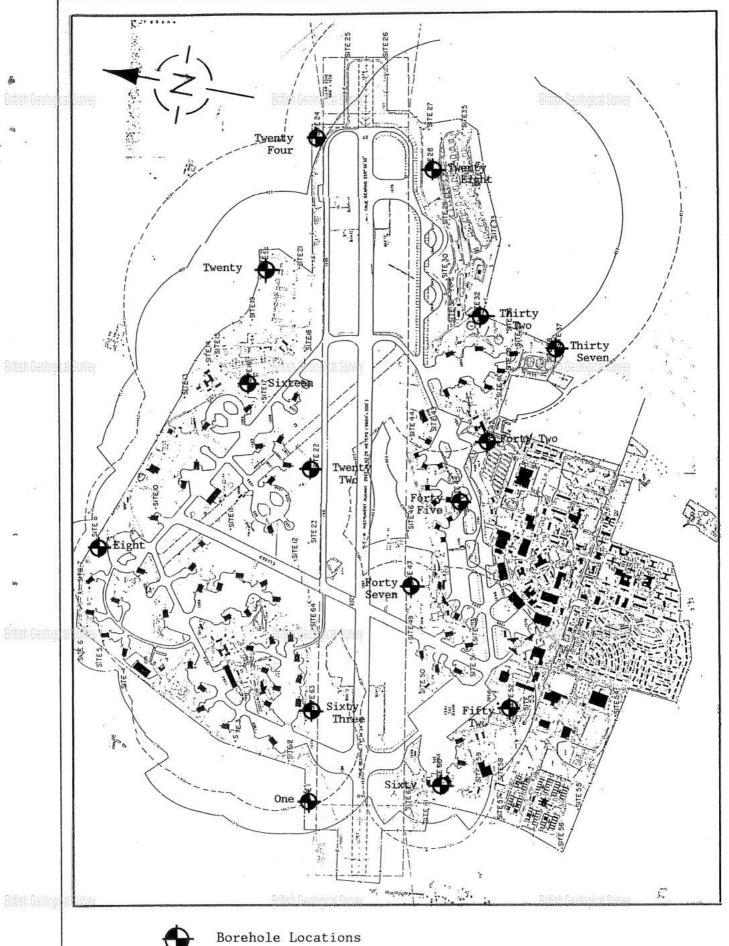
**Grid ref**: 453276 226189

# **Data providers**

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <a href="https://www.groundsure.com/sources-reference">https://www.groundsure.com/sources-reference</a>.

# **Terms and conditions**

Groundsure's Terms and Conditions can be accessed at this link: <a href="https://www.groundsure.com/terms-and-conditions-jan-2020/">https://www.groundsure.com/terms-and-conditions-jan-2020/</a>.






# Publicly available borehole data



| BGS archive records - Heyford | Park |
|-------------------------------|------|
|-------------------------------|------|



Scale 1:16320

Date June 1987

BOREHOLE LOCATION PLAN

Report No. S.894

| British Geologica S |                                      | British Goological Sune                       | STRATA        | CHANGE                 | SPT            | SAMI                                             | PLES                 |                     | DEPTH       |
|---------------------|--------------------------------------|-----------------------------------------------|---------------|------------------------|----------------|--------------------------------------------------|----------------------|---------------------|-------------|
|                     | Description                          | of Strata                                     | LEGEND        | DEPTH                  | CPT<br>N-VALUE | DEPTH                                            | TYPE                 | WATER<br>LEVEL<br>M | of<br>CASIN |
|                     | TOPSOIL  Grass over dark TOPSOIL     | brown clayey silty                            |               | شوسول سر شرس الرسية بي |                |                                                  |                      |                     |             |
|                     | WEATHERED ZON                        | JE                                            | 20 3          |                        |                |                                                  |                      |                     |             |
| Emish Geol igital S | Soft to firm lig<br>with abundant li | tht brown silty CLAY make mestone fragments   | Ø *           | 0.50                   |                | British Ged                                      | gical Surrey         |                     |             |
|                     | 9 <b>%</b><br>20                     |                                               | -0-           |                        |                |                                                  |                      |                     |             |
|                     | - increasing cla                     | y content                                     | +             |                        |                |                                                  |                      |                     |             |
|                     | - becoming cream                     | #000E000                                      | 0             |                        |                |                                                  |                      |                     |             |
| 20                  | strong weathered                     | ow rubbly moderately<br>LIMESTONE             |               |                        |                |                                                  |                      |                     |             |
|                     |                                      |                                               | <del></del>   | 1.00                   |                | 1.00                                             | В                    |                     |             |
|                     | +                                    |                                               | 丑             | 1                      |                |                                                  |                      |                     |             |
| Emish Georgeal S    |                                      |                                               |               |                        |                | Gritish Geo                                      | geal Surrey          |                     |             |
|                     |                                      | ē                                             | <del></del>   |                        |                |                                                  |                      |                     |             |
|                     | - highly weather                     | red                                           | - <del></del> | <u>.</u>               |                |                                                  |                      |                     |             |
|                     |                                      |                                               | <u> </u>      | 1.50                   |                | 1.50                                             | В                    | DRY                 |             |
|                     |                                      |                                               |               | and translation        |                | v                                                |                      |                     |             |
|                     |                                      | <i>y</i>                                      |               |                        |                |                                                  |                      |                     |             |
| Britan Geological S |                                      | Eriksh Geological Surve                       |               | huduubad               |                | Erifish Geo                                      | gral Surey           |                     |             |
|                     |                                      |                                               |               | 2.00                   |                |                                                  |                      |                     |             |
|                     | BOREHOLE DIAMET                      | ER : 100mm<br>: None                          |               |                        | ¥ -            | Water str<br>Water (sta<br>Water Sc              | anding levi<br>imple | -1)                 |             |
| 9                   | GROUND LEVEL<br>REMARKS              | :<br>. Borehole sunk from exi<br>ground level | sting         |                        | S.P.T<br>C.P.T | Bulk / Jar<br>Standard<br>Cone Per<br>Undisturbe | Penetration To       | est                 | & 100mm     |
| ,                   | Date.                                | BOREH                                         |               | LOG                    |                | 2                                                |                      | eport               | No.         |

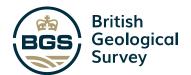
| Emish Geological Sur    | NI.                                   | Eritish Geological Sune               |              |            |                  | Staten Sta            | ;30.06.1                 |        | Т      |
|-------------------------|---------------------------------------|---------------------------------------|--------------|------------|------------------|-----------------------|--------------------------|--------|--------|
|                         |                                       | 1).<br>27                             | STRATA       | CHANGE     | SPT              | SAMI                  | PLES                     | WATER  | DEPTH  |
|                         | Description                           | of Strata                             | LEGEND       | DEPTH<br>M | C P T<br>N-VALUE | DEPTH<br>M            | TYPE                     | LEVEL  | CASIN  |
|                         | TOPSOIL<br>Grass overlying<br>TOPSOIL | dark brown clayey silty               |              |            |                  |                       | 2                        |        |        |
|                         | WEATHERED ZO                          |                                       | 土            | E          |                  |                       |                          |        |        |
|                         | Buff yellow rub<br>weathered LIMES    | bly moderately strong<br>TONE         | 丑            |            |                  |                       |                          |        |        |
|                         |                                       |                                       |              | lu lu      |                  |                       |                          |        |        |
| Brillian Geological Sur |                                       | Etitish Geological Sune               |              | 4          |                  | Friish Ger            | poical Surrey            |        |        |
|                         |                                       |                                       | 47           | _E 0.50    |                  |                       |                          |        | -      |
|                         |                                       |                                       |              | 4          |                  |                       |                          |        |        |
|                         |                                       |                                       |              | -          |                  |                       |                          |        |        |
|                         | - interlaminate                       | d hard and soft horizons              | 五            | 1          |                  |                       |                          |        |        |
|                         |                                       |                                       | —            | E          |                  |                       |                          |        |        |
|                         |                                       |                                       | 五            | 4          |                  |                       |                          |        | 1      |
|                         |                                       |                                       | 丑            | E.         |                  |                       |                          |        |        |
|                         |                                       |                                       | <u> </u>     | =          |                  |                       |                          |        | 1      |
|                         | - 9                                   |                                       | 五            | E 1.00     |                  | 1.00                  | В                        | DRY    |        |
| -                       |                                       |                                       |              | =          |                  |                       |                          | DKI    | 1      |
| Relien Gen seren Str    | GREAT OOLITE                          |                                       | 1000         | ŧ          |                  | Griffish Gen          | No cai Surrey            |        |        |
|                         | Buff yellow mod                       | erately strong LIMESTONE              | 1            |            |                  | 51,011,000            | MATERIA AMERI            |        |        |
|                         |                                       |                                       |              |            |                  |                       |                          |        |        |
|                         |                                       | 62                                    |              | <u> </u>   |                  |                       |                          |        |        |
|                         |                                       |                                       |              | Ē          |                  |                       |                          |        |        |
|                         |                                       |                                       |              | =          | 1                |                       |                          |        |        |
|                         |                                       |                                       |              | 1.50       | )                |                       |                          |        |        |
|                         |                                       |                                       |              | 1.50       |                  |                       |                          |        |        |
|                         |                                       |                                       |              | E          |                  |                       |                          |        |        |
|                         |                                       |                                       |              | huduutuu   |                  |                       |                          |        |        |
|                         |                                       |                                       |              | E          |                  |                       |                          |        |        |
|                         |                                       |                                       |              |            |                  |                       |                          |        |        |
| Brisis Geological Sur   |                                       | Eritah Geological Surve               |              | -          |                  | Holish Geo            | lg cal Sure              |        |        |
|                         |                                       |                                       |              | 2.00       |                  |                       |                          |        |        |
|                         | BOREHOLE DIAME                        | FR : 100                              |              | E 2.00     |                  | Water st              | rike                     | I      |        |
|                         | LINING TUBES                          | : None                                |              |            | I -              | Water (st<br>Water Sc | anding lev               | el )   |        |
| Pe                      | GROUND LEVEL                          | 1                                     |              |            | B/J -            | Bulk / Jar            |                          | n Test |        |
|                         | REMARKS .                             | Borehole sunk from exist ground level | sting        |            | C.P. I           | Cone Per              | netration T<br>ed Sample | est    | & 100m |
| н                       | Date.                                 |                                       | 2-200-1111-0 |            |                  |                       | R                        | eport  | No     |
|                         | ine 1987                              | BOREH                                 | IOLE         | LOG        | ,                |                       |                          | S.894  |        |

| Errist Gewag   |                                                          | : R.A.F. Upper Heyford                     | , Oxford | dshire                           |                                              |                                                | HOLE                | T                   | hirty<br>wo          |
|----------------|----------------------------------------------------------|--------------------------------------------|----------|----------------------------------|----------------------------------------------|------------------------------------------------|---------------------|---------------------|----------------------|
|                | Description                                              | of Strata                                  | STRATA   | CHANGE<br>DEPTH<br>M             | SPT<br>CPT<br>N-VALUE                        | SAMI<br>DEPTH<br>M                             | PLES<br>TYPE        | WATER<br>LEVEL<br>M | DEPTH<br>of<br>CASIN |
| -              | TOPSOIL.                                                 | k brown clayey silty TOPSOIL               | 11/4     |                                  |                                              |                                                |                     |                     |                      |
| Errish Geo ig  | WEATHERED ZO<br>Medium to coar<br>SAND with inclu        | PM 10                                      |          | 0.50                             |                                              | British Geo                                    | Tgical Surrey       |                     |                      |
|                | GREAT OOLITI                                             | E LIMESTONE derately strong LIMESTONE      |          |                                  |                                              |                                                |                     |                     |                      |
| **             |                                                          |                                            | 11       |                                  |                                              | 0.80                                           | В                   | DRY                 |                      |
| -              |                                                          |                                            |          | 1.00                             |                                              |                                                |                     |                     |                      |
| British Georg  |                                                          |                                            |          |                                  |                                              | British Geo                                    | lgral Surrey        |                     |                      |
|                |                                                          | E E                                        |          | nteorles denderalisation hantier |                                              |                                                |                     |                     |                      |
|                |                                                          |                                            |          | 1.50                             |                                              |                                                |                     |                     |                      |
|                |                                                          |                                            |          | mudand                           |                                              | 31                                             |                     |                     |                      |
| British Geolog |                                                          | British Geological Survey                  |          | 2.00                             |                                              | Eriteh Geo                                     | lg cal Suney        |                     |                      |
| 60             | BOREHOLE DIAM<br>LINING TUBES<br>GROUND LEVEL<br>REMARKS | None Borehole sunk from exist ground level | ing      | 15 6.00                          | 又 -<br>X -<br>W -<br>B/J -<br>S.P.T<br>C.P.T | Water Sc<br>Bulk / Jar<br>Standard<br>Cane Per | anding lev<br>ample | n Test<br>est       | \$ 100mm             |
|                | Date.                                                    | BOREHO                                     | N. F     | LOG                              |                                              |                                                |                     | eport               |                      |

BOREHOLE No. Thirty LOCATION : R.A.F. Upper Heyford, Oxfordshire Seven DATE OF BORING :30.06,1987 Emish Geological Survey STRATA CHANGE SAMPLES DEPTH CPT Description of Strata LEVEL CASING LEGEND DEPTH TYPE DEPTH N-VALUE M M M MADE GROUND Red brick, concrete and limestone rubble Firm brown sandy clay with included fragments of red brick Emisir Geological Surrey British Geological Sum WEATHERED ZONE Medium to coarse dark brown clayey sandy SILT with included fragments of limestone rubble 1.00 1.00 В Emish Geological Survey British Geological Sum -occasional coarse hard limestone rubble GREAT OOLITE LIMESTONE 1.50 1.50 В DRY Buff yellow moderately strong LIMESTONE British Geological Survey Eriish Geological Surr V - Water strike
Y - Water strike
Y - Water Standing level
W - Water Sample
B/J - Bulk/Jor Sample
S.P.T. - Standard Penetration Test
C.P.T. - Cone Penetration Test
(U) - Undisturbed Sample (38mm & 100mm) BOREHOLE DIAMETER : 100mm LINING TUBES : None GROUND LEVEL Borehole sunk from existing ground level REMARKS Report No.

BOREHOLE

LOG

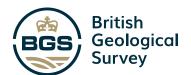

S.894

Date.

June 1987



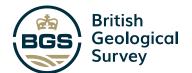
|          |          | 1           |             |
|----------|----------|-------------|-------------|
| $RI_{-}$ | archive  | records -   | N /I /I ( ) |
| כטט      | UICIIIVE | 1660143 - 1 | 1V14U       |




# BGS ID: 336484 : BGS Reference: SP52NW51 British National Grid (27700) : 454850,227740

Report an issue with this borehole

<< | < Prev | Page 1 of 2 ▼ | Next > | >>


| MUM        | TI# 6   | TE A     |         | PARTHERS                                                                |                           | _         | M NEW            | ROUTE    | -OXFORD TO BANBURY S                          | ECTION  |            | LEVEL  | -      | 122,    |         | _    | m O               | .0.    | HOLE NO     |         | 072                                  |        |
|------------|---------|----------|---------|-------------------------------------------------------------------------|---------------------------|-----------|------------------|----------|-----------------------------------------------|---------|------------|--------|--------|---------|---------|------|-------------------|--------|-------------|---------|--------------------------------------|--------|
| 1000       | -       |          | FN      | it<br>doration Associates                                               | EXCAVATION METHOD         |           | Rotar            | y Coring | g Dando 220 Rig                               |         | -          | HATES, | -      | _       |         | 2773 |                   | N      | SHEET !     | -       |                                      |        |
| AB. 7      | FSTIMO  | 8Y:      | Fu      | deration Associates                                                     | 105mm diameter Ro         | otar      |                  | ig trom  |                                               |         | DATES      |        |        | to      | 24.5.   |      |                   | -      | FIGURE      | Yanta . |                                      |        |
| -/time     | Depth   |          |         | V                                                                       |                           | _         | Strete           | -        | Graphical Representation                      |         | ling/in si |        |        | 425     | J PL    | Test | *                 | Cu     |             |         | d d                                  | 6.     |
| et<br>opth | Cosing  | Wete     |         | Description of                                                          | Strata                    | 9.        | Reduced<br>Level | Depth    |                                               | Depths  | No.        | Blows  | 13     | *       | * *     |      | Mg/m <sup>3</sup> |        | th ah       | ٠,٨     | "v                                   |        |
|            | -       |          | TI      |                                                                         |                           |           | 122.74           | - 0.00   |                                               | 0,00    | Ы          |        |        |         |         |      |                   | 1      | •           |         |                                      |        |
|            | ment de |          | 94      | Subsequent to subsequented GRAVEL                                       | CORNE PE and              | i e       | 122,44           | 0.30     |                                               |         | Ш          |        |        |         | n diam  | -    |                   |        |             |         |                                      |        |
|            | BIIIIS  | 080      | H       | publical as of light brown limestor                                     | e with some stiff Pos.    |           |                  |          |                                               |         |            |        | 46     |         | Di IIIS | 1080 |                   | 104    |             |         |                                      |        |
| 12         |         | 1        | Ш       | Limento                                                                 | m) \$2%                   |           |                  | _        |                                               | 1.00    | H          |        | 0      |         |         |      |                   | 1      | •           |         |                                      |        |
|            |         |          | Ш       | Relow plent 1.00m with a matrix<br>claver sill.                         | of light terms enterrease | М         |                  |          |                                               | 1       |            |        | 78     | 100     | 5 17    | 29   | § ()              | ı      |             |         |                                      |        |
|            |         | 1        | 111     | Very weak light grevish brown rais                                      | Access MULTIPATE          | 2.4       | 121,14           | 1.60     |                                               | 1.80    |            |        | 13     |         |         |      |                   | - 1    |             |         |                                      |        |
|            |         |          | Ш       | (White Limes)                                                           | me - Ardley)              |           | 120,79           | 1.95     |                                               | 1.00    |            |        | 100    |         |         |      |                   | 1      | -           |         |                                      |        |
|            |         |          | Ш       | Moderately weak white and very it<br>highly fractured very fine grained | micritic LIMESTONE        | $\exists$ |                  |          |                                               | 2.30    |            |        | 22     |         |         |      |                   |        |             |         |                                      |        |
|            |         | 1        | 111     | with many high-spired gastrousis. (White Limeste                        |                           | Ħ         |                  |          |                                               |         |            |        | 96     |         |         |      |                   |        | ĺ           |         |                                      |        |
|            |         |          | 111     | firlew 2,50m limestone becoming<br>fine to medium grained bloturbate    |                           |           | 1001             | L        |                                               | 1       |            |        | 52     |         |         |      |                   |        | F.          |         |                                      |        |
|            | 1       |          | Ш       | Helow 3, ffor Linestone molerate                                        | y weak to moderately      |           |                  |          |                                               | 3.40    | 1          |        |        |         |         |      |                   |        | 1,50 78     | 1,1     | 79                                   |        |
|            |         |          | 111     | From 4,55 to 4.75m very weak a                                          | range very stilly fine    | H         |                  |          |                                               | 3.70    |            |        | 93     |         | 1       |      |                   |        |             |         |                                      |        |
|            |         |          | 111     | Itelow 4,75m limestone very pell                                        |                           | Ę         |                  |          |                                               | 3       |            |        | 43     |         |         |      |                   |        |             |         |                                      |        |
|            | +       |          | #       | Neirw 6,25m timestone becoming                                          | moderately strong         | Ħ         |                  | Г        |                                               | 1       |            |        | 85     |         | 1       |      |                   |        |             |         |                                      |        |
|            | 1       |          | 1       | william and and teacher in                                              |                           | T,        |                  |          |                                               | 4.65    | J.         | - 6    | 72     | 1 00    | 18 16   | 33   |                   |        | ĺ           |         |                                      |        |
|            |         |          | 1       |                                                                         |                           | Ŧ         |                  |          |                                               | 1.00    |            |        |        |         |         |      |                   | 1      | L           |         |                                      |        |
| .79 .      | +       |          | 1       |                                                                         | Ξ.                        | Ŧ         | -                |          |                                               | 3       |            | 1 8    | 94     |         |         | -    |                   |        | 2.71 78     | 4.8     | 1 52                                 |        |
|            | 1       |          | 33      |                                                                         | . =                       | 宁         |                  |          |                                               | 1       |            |        | 92     |         |         |      |                   |        | 1           |         |                                      |        |
|            |         |          |         |                                                                         | =                         | 7         |                  |          |                                               | 6.00    | 1          |        |        |         |         |      |                   |        | •           | 2.0     | 8 82                                 |        |
|            | +       |          | M       |                                                                         | 片                         | 1.        | -                | t        |                                               | 8.00    |            |        | 99     |         |         |      |                   |        | T           |         |                                      |        |
|            |         | 1        |         | I.                                                                      | 豆                         | =         |                  |          |                                               | 1       |            |        | 62     |         |         | 1    |                   |        |             |         |                                      |        |
|            |         |          | 13      |                                                                         |                           | Ť         | 115.89           |          |                                               | 6.85    | U.         | 50/50  |        | 98      | 30 18   | 49   |                   | 6 8    | 1.89 78     | į       | i                                    |        |
| -          | +       | -        | 10      | Very still to hard initially west                                       | т. Қа                     | X 3       | 115,69           | г        |                                               | 7.05    | 0 1        | 00,00  |        | 1       | -1      |      |                   |        |             |         | ં.                                   | \$ £   |
|            | PILLO   | OBU      | 1       | \                                                                       | rations - Shipton)        | H         | ****             | SII UGU  |                                               |         |            |        | 87     |         |         | HORE | D L               | i oui  |             |         |                                      | 00 00  |
|            |         |          |         | Melecutely week to mederately a<br>faintly weathered grange fine to     | medium grained            |           |                  |          |                                               |         |            | .,     | 37     | 1 1     |         | 1    |                   |        | es come non |         | - 1<br>                              | , 4    |
|            | +       |          | 1       | Motorhoted pelletedal LIMESTO                                           | NF. T                     | 7         | -                | -        |                                               | 8.00    | N I        | *      |        |         |         |      |                   | 0 8    | 1.81 7      | 1.6     | 8 81                                 | 2 4    |
|            |         | 1        |         | From 1.70 to 7.50m. 8.00 to 8                                           | 10m and 10,40 to 10,90m   | 中         |                  |          |                                               | Ħ       |            | 1      | 97     |         | 1       |      |                   |        | Ĺ           |         | •                                    | 7 7    |
|            | 1       |          |         | hard dork grey very claves cal-<br>weak sillelose in places very th     | inty Interbedded with     | $\pm$     |                  |          |                                               |         |            |        | 69     | 1 1     |         |      |                   |        | 2,14 7      |         |                                      | , £    |
|            | 1       | -        |         | green silty clay with patches of                                        | carbon.                   | Į         |                  | +        |                                               | 0.00    | tri        |        | 1      | 1       |         | 1    |                   | 1      | - Slight a  | epa ge  | at 9,0                               | m.     |
|            |         |          |         |                                                                         | 1.                        | :         |                  | 1        | ######################################        | H       |            | 8      | 85     |         |         |      |                   |        |             |         |                                      |        |
|            | 1       | 1        | .8      |                                                                         | Ħ                         |           |                  | 1        |                                               |         |            |        | 0      |         |         |      |                   |        | (*Point L   | oed In  | dex <n.< td=""><td>10 MN/</td></n.<> | 10 MN/ |
|            |         | 1        |         | L                                                                       | F                         | _         | ١.               | 1        | BITHHILLIAMINI                                | 10.00   |            |        |        |         |         |      |                   |        | F           |         |                                      |        |
|            | Firel   | mater pt | -       | PIEZOMETER (A Upper se                                                  | SAMPLE D Seel             | diet      | lurbod som       | to R A   |                                               | M value | (av 180a-  | ~ v v. | no ele | ingth k | H/m²    |      | J. Tie            | lady I | BSC. C.Eng. | FICE F  | HE                                   | F - 5  |
| 5          | Bubeec  | -        | ter etr | Response                                                                | length AND B Bulk         | diete     | urbed samp       |          | scovery to scale 26/1<br>selly vane lost driv |         | ling       |        | ñ.     | novid   |         | 1    | Direc             |        |             |         | 10.7                                 |        |



# BGS ID: 336484 : BGS Reference: SP52NW51 British National Grid (27700) : 454850,227740

Report an issue with this borehole

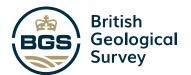
| MEINI      | [ 0          |              | A PARTNERS                 |                                                         |                |        |            |              | OXFORD TO BANBURY SE                          | CTION               |              | D LEVEL    |          |                  | 22.74  | 22773  | m                 | ),D.              | HOLE     |        | 072      | -        |     |
|------------|--------------|--------------|----------------------------|---------------------------------------------------------|----------------|--------|------------|--------------|-----------------------------------------------|---------------------|--------------|------------|----------|------------------|--------|--------|-------------------|-------------------|----------|--------|----------|----------|-----|
| LOCOL      | 04K 81       |              | fill<br>apporation Associa | EXCAV                                                   | TION METHO     | 200    | Rotar      | y Coring     | Dando 220 Rig<br>GL to 20.0 m                 |                     |              | INATES     |          | _                |        |        |                   | -                 | FIGURE   |        | ΔF 2     | -        |     |
|            | STING        | BY: 1        | sploration Associa         | iles 105mm                                              | diameter       | Rou    |            | ing Troin    |                                               |                     |              | 23.5.      |          | 0 24             |        | . Test |                   | -                 |          |        | sale and | Notes    |     |
| e/1:me     | Depth        | Depth        |                            |                                                         | -              | _      | Strata     | -            | Graphical Representation                      | Samp                |              | tu teating | W/       | 475              |        | LL     |                   | Cu                | 1. 0     | 1.     | 1.       | d        |     |
| el<br>epth | of<br>Casing | to<br>Water  | De                         | scription of Strata                                     |                | Leg.   | Reduced    | Depth        |                                               | Depths              | No.          | Blows      | <b>A</b> | *                | % %    | *      | Mg/m <sup>3</sup> | kN/m <sup>2</sup> | h        | n      | ·V       | <u> </u> |     |
| -          |              |              | <del></del>                |                                                         |                |        | -          | -            |                                               | 10.00               | П            |            |          |                  |        |        |                   |                   | 2,38     | 78 .   | 3.04     | 77       |     |
|            | Tiente       | A. all       | (White Limester)           | e - Sitpton en above)                                   | h.             | E 8.5  | : 0.2      | Hada Francis |                                               |                     |              |            | 81       | 1 00             | 0 10   | 40     | L Design          | SI TR             | area e   |        |          |          |     |
|            | Britis       | 10801        | ital outibl                |                                                         |                |        | . 0        | IDH DEF      |                                               |                     |              |            | 64       | 100              |        | W      |                   | d QL              | HARL     |        |          |          |     |
| - 0        |              |              |                            |                                                         | 10 0           | XA.    | 1000       |              |                                               | 11.00               |              |            |          |                  | 1      | 1      | 1                 |                   | T        |        |          | **       |     |
|            |              |              |                            |                                                         | þ              | Ļ.     |            |              |                                               |                     |              |            | 100      |                  |        | 1      | 1                 | 8                 | 1.48     | 78     | 3.02     | 0.7      |     |
|            |              |              |                            | thinty herbled were altry to                            | places         |        | 111,19     | 11.55        |                                               |                     |              |            | 91       |                  | 14 1:  | ١.,    | 1                 |                   |          |        |          |          |     |
| 6.79       |              |              | fine easely elightly pe    | Heinidal ("I.AY (Hampon 3                               | arley (Sede)   | ===    | 9          |              |                                               | 12.00               |              |            |          | 100              | 14 11. |        | 1                 |                   | -        |        |          |          |     |
| -          | •            |              | From 12, 80 to 12,900      | e dark greyish green fissu<br>es and vertical black roo | ed silty       | Σ.     | 1          | T .          |                                               | 12,20               | s            | N = 72     |          |                  | 6 15   | ١.,    | 1                 |                   | 1        |        |          |          |     |
|            |              |              | Impresentant               | o clay becoming dark gre                                |                | æ      |            |              |                                               |                     | r 2          |            | 98       | 100              | 0 13   | 1,,,   | 1                 | t                 |          |        |          |          |     |
|            | 1            |              | Incompliants environment   | cone                                                    | B 1            |        |            |              |                                               |                     |              |            | 70       | , , ,            | 22 2   | 1 60   |                   |                   | L        |        |          |          |     |
| -          | -            | 1            | and tientle                | m clay with much dissem                                 |                |        | -          | +            |                                               | 13.00               | IS I         | 109/       |          |                  |        | 50     | 1                 | 1                 |          |        |          |          |     |
|            |              | 1            | Below 13 50n very d        | lark dense green clayey willy clay with occasional      | ery (ine       | æ      |            |              |                                               | 20.0                | D 3          | 223        | 93       | 100              |        |        | 1                 |                   |          |        |          |          |     |
|            |              |              | and route,                 |                                                         | vasearas       | 77     |            |              |                                               | lancon.             |              | 1          | 67       | 100              | 14 1   | 36     | 1                 | 1                 |          |        |          |          |     |
| 00         | 3,00         | 11,00        | At when the want of the    | ish green calcaraous silty                              | fine grained   | -      | 108.74     | - 14.00      |                                               | 14.00               | Ħ            |            |          |                  |        |        | 1                 | 1                 | 1.31     | 78     | 2.55     | 78       |     |
| 00         | 3,00         | 6.00         | AMORE SANDSTONE            | ith some darker green cla<br>(linmpen Marly Beds)       | wines and      |        | 108.54     | 14.20        |                                               |                     | 14           |            | 68       | 1                | - 1    | 1      | 1                 | 1                 |          |        |          |          |     |
|            |              |              | Very stiff worth or        | een and dark green thinly                               | nterbedded     | B - X  |            |              |                                               |                     | 1            |            | 48       |                  |        | 1      |                   |                   |          |        |          |          |     |
|            |              | 1 1          | clightly claves for an     | mely SILT and slightly oilt                             | sonpy          | 1      |            |              |                                               | 15.00               |              | 10*        | T.e.     | 100              | 21 24  | 54     | 1                 | 1                 | SPT N    |        |          |          |     |
| ÷ +        |              | 1 1          |                            | in becoming a very weak ;                               | reyish green   | =      |            | Γ            |                                               |                     |              |            | 98       |                  |        | 1      | 2,4               | 3                 | 0.73     | 77     | 2.52     | 6.1      |     |
|            |              | 1            | discussed allies complete  | me.<br>In very weak greviah heme                        | - 1            | TX     |            |              |                                               | 15.60               | A.           |            | 65       | 1 1              |        |        |                   | 1                 |          |        |          |          |     |
|            |              |              | weathered nrange ve        | ry clayer silistone/very :                              | illy           | X.     | 1          | 1            |                                               |                     | 11           |            |          | 1 1              | - 1    |        |                   | 1                 | _        |        |          |          |     |
| 8          | -            |              | mudations.                 | omierately strong grey thi                              | nly in         | 17     | 106.69     | 16.00        |                                               | 1                   |              |            |          |                  |        | i.     |                   | 1                 |          |        |          |          |     |
|            |              |              | medium bested fine         | in pardium grained peliste                              | dal micritic   | $\pm$  | 1          |              |                                               |                     |              |            | 94       | 1                |        |        | 1                 | 1                 |          |        |          |          |     |
|            |              |              | From 16.45 to 16.8         | On Himselme week to me                                  | erately        |        | 3          | 1            | HALIMATA                                      | 1                   |              |            | 47       |                  | 1      |        | 1                 | 1                 |          |        |          |          |     |
| 7.         |              |              | From 18,80 to 18,2         | 5m ilmestone moderately                                 | weak to        | +      |            | +            |                                               | 1                   |              | 1          |          |                  |        |        |                   |                   | Γ        |        |          |          |     |
|            | Britis       | Geolo        | and onleasemable           | hinly bedded partly silicen                             | 5-200 mmmm - 1 | H      | l li       | ish bed      | HERRICAL SECTION                              |                     |              |            |          |                  | HI     | SII DE |                   |                   | ley.     |        |          |          | 5   |
|            |              |              | From 18, 25 to 18, 45      | m very wenk grey clayes<br>valely weak to mulerately    | Stitutes.      | 王      | 3          |              |                                               | 17.70               | -            | 1          |          | 1.00             | 14 1   | 4 51   |                   |                   |          |        |          |          | 00  |
|            |              |              | current todded fine        | in medium grained pelletoi                              | iel,           | 1      |            | 1            |                                               | }                   |              |            | 1        |                  |        |        |                   |                   | 0.67     | 77     | 0.67     | 68       | S   |
| 22         | t            | 1 9          | relearentle signity        | micritic limestone.                                     |                | 干      | 4          |              |                                               | 1                   |              | 1          |          |                  |        |        |                   | 1                 |          |        |          |          | 2   |
|            | 1            | 1            |                            |                                                         |                | T      | 3          |              |                                               |                     |              |            |          |                  |        |        |                   | 1                 | l        |        | 0.77     |          | 7   |
|            | 1            |              |                            |                                                         |                | 1      | 4          |              |                                               |                     |              | 1          | 95       |                  |        | 1      |                   | 1                 | 1.51     |        | 3.77     |          | Ŧ   |
|            | +            |              | (F)                        |                                                         |                | 中      | d i        | †            |                                               |                     |              | 1          | 50       | 1                | 1      |        | 1                 |                   | 0,21     |        |          |          |     |
|            | 1            |              | 1                          |                                                         |                |        | 9          | 1            | HILLIAN TO LAND                               |                     | 3            |            | 1        |                  |        |        | 1                 |                   | 0.82     | 78     | 4.20     | 00       |     |
|            | 1            |              |                            |                                                         |                | 1      | 1          | e veron      |                                               |                     |              | 1          |          | 1                |        | 1      |                   |                   | 1        |        |          |          |     |
| B_00       | 3.00         | 16.00        |                            |                                                         |                | EN     | 102.7      | 20,00        |                                               | 20.00               | <u>' - L</u> |            | _        |                  | Щ      | ٠,     |                   |                   | Г        | _      | _        | 1.       | 1 - |
|            | 1            | rater strike | PIFZOMETER                 |                                                         | AMPLE D SA     | -11 41 | lurbed see | rele Q P     | telary core Blows N =<br>scovery to scale 26/ | M value<br>50 blows |              | * *        | -        | rength<br>sturn! | kH/m²  |        | 1 1               | Intedv            | BSC. C.E | ine.FI | CE.FIH   | 1 8      |     |



# BGS ID: 336544 : BGS Reference: SP52NW111 British National Grid (27700) : 454903,227210

Report an issue with this borehole

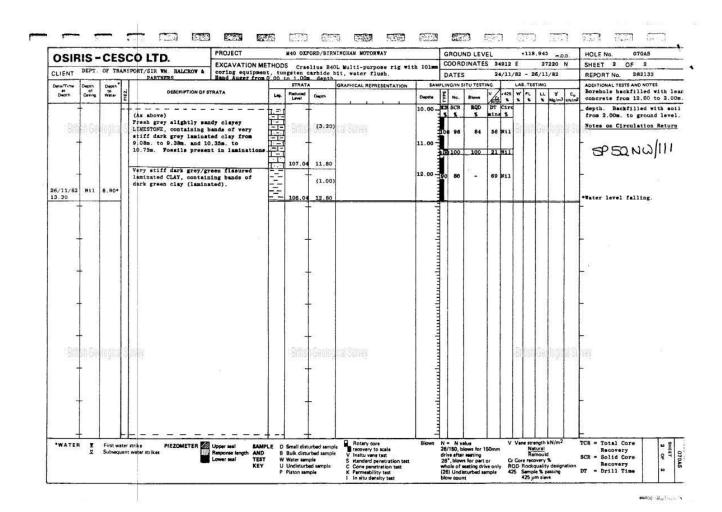


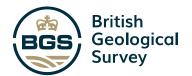

< Prev

Page 2 of 2 🕶

Next >

>>


| OSIR                            | RIS           | - C | ES                  | CO LTD.                                                                                                                  | PROJECT                                                          |             | M40 0X                  | FORD/BIR   | HINGHAM MOTORWAY                                                                                                         |        | _                          |                                      | D LEVI   | _             |     |                    |                             | 5 m.0  |            | HOLE No. 070AS                                                      |
|---------------------------------|---------------|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|--------------------------------------|----------|---------------|-----|--------------------|-----------------------------|--------|------------|---------------------------------------------------------------------|
|                                 |               |     | _                   | PORT/SIR WM. HALCROW &                                                                                                   | coring equipmen                                                  | t. tur      | gsten                   | carbide    | OL Multi-purpose rig wit                                                                                                 | h 101m | COC                        |                                      | NATES    |               |     | 82 -               | _                           | 7220   | N          | SHEET 1 OF 2<br>REPORT No. D82133                                   |
| Dete/Time                       | Depth         | T   | epth*               | PARTNERS.                                                                                                                | Hand Auger from                                                  | 0.00        | STRAT                   | Om denth   | GRAPHICAL REPRESENTATION                                                                                                 | T SAI  | 1                          | -                                    | U TESTI  |               |     | All, TE            | -                           |        | -          | ADDITIONAL TESTS AND NOTES                                          |
| al<br>Depth                     | of<br>Carring |     | PIEZ.               | DESCRIPTION OF                                                                                                           | TRATA                                                            | Leg.        | Reduced<br>Level        | Depth      | I I I I                                                                                                                  | Depths | MA A                       | T                                    | Blows    | Z             | 425 | W PL               | Tu                          | 18     | Cu<br>kN/m | Borehole backfilled with les                                        |
| 24/11/82 <sup>-1</sup><br>14.30 | N11           | 1   | -                   | Buff f.m.c. angular G                                                                                                    |                                                                  | 000         |                         |            |                                                                                                                          | 0.00   | C S                        | CR<br>%                              | RQD<br>% | DT            | 2   |                    | Γ                           |        |            | depth. Backfilled with soi<br>from 2,00m. to ground level           |
| Brill                           | in G          |     | jica S              | INEY.                                                                                                                    |                                                                  | 0           | 117.84                  | 1.00       | cal Survey                                                                                                               | 1.00 - | l)                         | +                                    | -        |               | 100 |                    | 108                         | dogic  | 18         | Motes on Circulation Return                                         |
|                                 |               |     |                     | Highly weathered buff<br>slightly clayey colit:                                                                          |                                                                  | H           |                         |            |                                                                                                                          | 1.00   | 76                         | -                                    |          | 38            | 80  |                    |                             |        |            | 5453ND/111                                                          |
| 24/11/82<br>17.00               | 2.30          | Di  | гу                  | (WHITE LIMESTONE)                                                                                                        |                                                                  | 丑           |                         | (1.50)     |                                                                                                                          | 2.00 _ | 66                         | -                                    |          | 38            | 80  |                    |                             |        |            | His was assumed to severe about                                     |
|                                 |               | D   | гу                  | Generally moderately                                                                                                     | reathered buff                                                   | H           | 116,34                  | 2,50       |                                                                                                                          |        |                            | 32                                   | 9000     | 45            |     |                    |                             |        |            | Rock rolling carried out 2,25m. to 2,40m.                           |
|                                 |               |     |                     | and brownish cream, or<br>highly weathered, sli<br>slightly clayey colit;                                                | casionally<br>phtly sandy                                        |             | -                       |            |                                                                                                                          | 3.00 - | Ĭ                          | -                                    | 5        | 45            | 100 |                    |                             |        | 8          |                                                                     |
| 5 <del>0</del>                  |               |     |                     | containing calcite verbivalves. (WHITE LIME                                                                              | ning and some                                                    |             |                         | (4.00)     |                                                                                                                          | 4.00 - | 0                          | 40                                   | 12       | 57            | 80  |                    |                             |        |            |                                                                     |
| :=                              |               |     |                     |                                                                                                                          |                                                                  |             | _                       |            |                                                                                                                          | 5.00   | 83                         |                                      | 33       | 68            | 75  |                    |                             |        |            | Vertical fractures present, causing reduced circulation returns.    |
| 2 <u>-</u>                      |               |     |                     |                                                                                                                          |                                                                  |             | 112.34                  | 6.50       |                                                                                                                          | 6.00 - | 90 6                       | 85                                   | 57       | 73            | 75  |                    |                             |        |            | _                                                                   |
| 4                               |               |     |                     | Stiff yellow brown sl:<br>CLAY. (Completely wear                                                                         | thered Mudstone).                                                |             | 111.96                  | 6.88       |                                                                                                                          | 7.00   | 1                          | 1                                    |          |               | NAI |                    |                             |        |            | Returns lost due to presence                                        |
| - Diril                         | sh G          |     | jiral S             | Very stiff dark grey of<br>Slightly weathered day                                                                        | rk grey/grey                                                     | ij          | Britis                  | n Geolor   | ical Sulvey                                                                                                              | 20.20  |                            | 7                                    |          |               |     | antiel             | i<br>ilie                   | l mais |            | yellow brown, clayey sand/s<br>clay.                                |
| - Dina                          |               |     | Tra o               | slightly sandy, clayer<br>LIMESTONE. (HAMPEN M.                                                                          | TORBITITELOUS                                                    |             | 110.24                  | (1.55)     | ica carej                                                                                                                | 8.00 - | 90 7                       | 13                                   | 53       | 63            | N11 | 31 1101            | 100                         | no die |            |                                                                     |
| 17.00                           |               |     | гу                  | Fresh grey slightly s.<br>LIMESTONE, containing<br>stiff dark grey lamin<br>9.08m. to 9.38m. and<br>10.75m. Fossils pres | bands of very<br>ated clay from<br>10.35m. to                    |             |                         | 5.80       |                                                                                                                          | 9.00   | 0                          | 19                                   | 55       | 75            | N11 |                    |                             |        |            |                                                                     |
| 26/11/82<br>07.40               | 2.30          | 8   | .95                 | tions.                                                                                                                   |                                                                  | 되           |                         |            |                                                                                                                          | 10.00  |                            |                                      |          |               |     |                    |                             |        |            | _                                                                   |
| *WATER                          | Y             | Su  | st water<br>brequen | strike PIEZOMETER                                                                                                        | Upper seal EAMP<br>Response length AND<br>Lower seal TEST<br>KEY | B<br>W<br>U | Bulk dist.<br>Water sam | sed sample | Rotary core recovery to scale V Insitu vane test S standard penetration test C Cone penetration test K Permasbility test | Blows  | drive a<br>26°, b<br>whole | O, blo<br>after s<br>slows<br>of ser | ws for 1 | or<br>re only | Cri | N<br>R<br>Core rec | ernous<br>covery<br>cqualit | d      | ution      | TCR = Total Core Recovery SCR = Solid Core Recovery DT = Drill Time |




### BGS ID: 336544 : BGS Reference: SP52NW111 British National Grid (27700) : 454903,227210

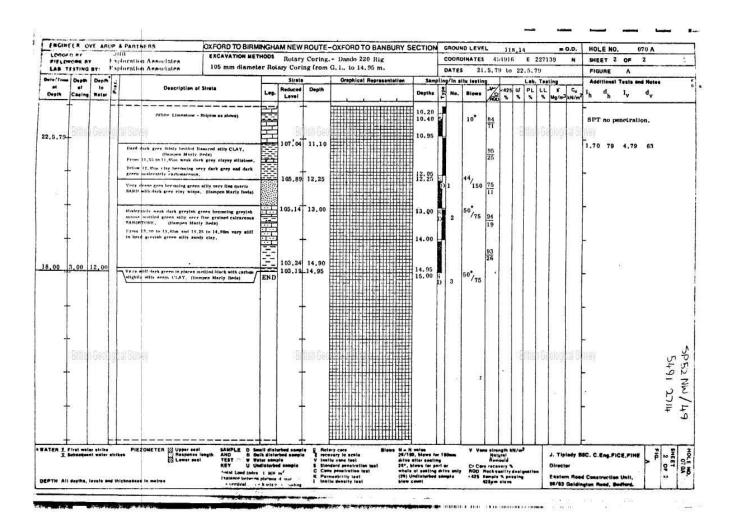
Report an issue with this borehole

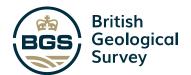






### BGS ID: 336482 : BGS Reference: SP52NW49 British National Grid (27700) : 454910,227140

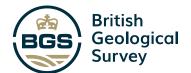

Report an issue with this borehole


<< | < Prev

Page 1 of 2 🕶

Next >








BGS ID: 336482 : BGS Reference: SP52NW49 British National Grid (27700) : 454910,227140

Report an issue with this borehole

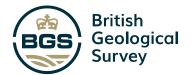
| ENCINE      | FR. O        |              | A PARTHERS                                                        | OXFORD TO BIRMI                             | NGHA      | M NEW              | ROUTE    | -OXFORD TO BANBURY S     | ECTION                 | GROUN      | DLEVEL     |        | 18,14      |         | M       | 0.D.  | HOLE              | NO.            | 070            | ٨              |      |
|-------------|--------------|--------------|-------------------------------------------------------------------|---------------------------------------------|-----------|--------------------|----------|--------------------------|------------------------|------------|------------|--------|------------|---------|---------|-------|-------------------|----------------|----------------|----------------|------|
| Locar       |              |              | ploration Associates                                              | EXCAVATION METH                             |           |                    |          | g Dando 220 rig.         |                        | COORD      | INATES 4   | 54910  | , 1        | 2271    | 139     | N     | SHEET             | 1              | OF :           | 2              |      |
| LAB. TI     |              |              | ploration Associates                                              | 105 mm diamete                              | r Rots    | ary Cori           | ng fron  | G. I to 14.95 m          |                        | DATES      | 21.5.      | 79 L   | ) 22.f     | .79     |         |       | FIGUR             |                | A              |                |      |
| te/fime     | Depth        | Depth'       |                                                                   |                                             | <u> </u>  | Strata             |          | Graphical Representation | Samp                   | ling/in al | tu testing | -      |            | ab. Te  |         | 1 -   | - 10 page 100 mag |                | ets and        |                |      |
| el<br>Jepth | of<br>Casing | Noter a      | Description o                                                     | f Strate                                    | Leg.      | Reduced<br>Level   | Depth    | 1                        | Depths                 | No.        | Blows      | 8      |            | % N     | Mg/m    |       | I <sub>h</sub>    | d <sub>h</sub> | 1 <sub>v</sub> | d <sub>v</sub> |      |
| 5.79        | -            | 4            |                                                                   |                                             | 388       | 118.14             | 0.00     |                          | 0.00                   | bl l       |            | 33     | 11         | 1       | 1       |       |                   | +11            |                |                |      |
|             |              | 04           | Subangular in subrounded GRAVI                                    | I., CORBLES and some                        |           |                    |          |                          | 0.60                   |            |            | 0      |            |         | 1       |       |                   |                |                |                |      |
|             | ailish       |              | bressing an orange brown claye                                    | y calcarmous mill.                          | 88        | Britt              |          |                          | 1                      | TY .       |            | 18     | Brit       | sh Ge   | ologic  | # Sur | ey.               |                |                |                |      |
| 4           |              | H            | (Colluvium)                                                       |                                             |           |                    | -        |                          | 1.00                   |            |            | 00     |            |         | -       |       | -                 |                |                |                |      |
| - 1         | <u> </u>     | E            |                                                                   |                                             |           | 1                  |          |                          |                        |            |            | 0      |            | -1      |         | 1     |                   |                |                |                |      |
|             | 1            | 1            |                                                                   |                                             | 344       |                    |          |                          | 1.60                   | <b>1</b>   |            | -      |            | - 1     | 4       | 1 8   |                   | 200            |                |                |      |
|             |              | H            | Maxicentely weak to mederately a                                  | trong year light brown                      |           | 116.34             | 1.80     |                          |                        |            | 1.         |        |            | 1       | 1       | 1 8   | 0.16              | 79             |                |                |      |
|             |              |              | thinks bedied in places mederate                                  | y to highly fractured                       | 平         |                    |          |                          |                        |            |            | H      |            |         |         |       |                   |                |                |                |      |
|             |              | 1            | LIMESTINE , (White Limestone                                      |                                             | 田         |                    |          |                          | 1                      | 1          |            |        |            |         | 1       |       | 1,12              | 82             | 1,56           | 76             |      |
|             |              | E E          | From 2,30 to 2,95m very weak<br>Islable and broken coloareous o   |                                             | 岀         |                    |          |                          | 2.90                   | U.         |            |        |            |         |         |       |                   |                |                |                |      |
| -           | -            | 1            | Nelow 3, 20m Ilmestone becomb                                     |                                             | 中         | 2.50               | -        |                          |                        |            |            |        | 1 1        |         |         | 1     | 1.04              | 79             | 0,30           | 79             |      |
|             |              | 1            | hioturinted.                                                      |                                             | $\pm$     |                    |          |                          |                        |            |            | 67     |            |         | 1       | 1     | 1,56              | 78             |                |                |      |
|             |              | 1            | From 4.00 to 4.25m very west<br>coloareous siltatone.             | orange very clayey                          |           |                    |          |                          | 1                      |            | 1 1        | 97     | 1 1        |         | 1       | 1     |                   |                |                |                |      |
|             |              | 1            | From 4.25 to 4,40m limestone                                      | with irregular high                         | 211       | 1 2                |          |                          | 4.00                   | N.         | 1          |        |            |         |         | 1     |                   |                | 1120           |                |      |
|             |              | H.           | angle joint,                                                      | 100 301 300                                 | 1         |                    |          |                          | 1                      |            |            | 03     |            |         | 1       | 1     | 6                 |                |                |                |      |
|             |              | 1            | From 5.00 to 5.80m Hosetone<br>materials string medium to 0       | moderately weak to<br>inkly bedded slightly | 田         |                    |          |                          | 1                      |            |            |        |            | 1       | 2.5     |       | į.                |                |                |                |      |
| 8.00        | NONE         | DRY          | sandy becoming very fractured,                                    | 1000 De 100                                 | 坩         | 1 1                |          |                          | 4.80                   | ti i       |            |        | 1          |         | 12.0    | 1     | L                 |                | 2,96           |                |      |
| 8.00        | NONE         | DRY          | Relow 5,80m Horestone weak to<br>weathered orange and sandy       | moderately weak                             | Ŧ         |                    | 70       |                          | 1                      | 7          |            | 16     |            |         |         |       | 2,88              | 78             | 2.90           | 70             |      |
| 5.79        |              |              |                                                                   |                                             | 田         |                    |          |                          |                        |            |            | 8      |            |         | 1       | 1     |                   |                |                |                |      |
|             |              |              |                                                                   |                                             |           | 112.19             | 5.95     |                          | 1                      |            |            | - 1    |            | 1       |         | 1     |                   |                |                |                |      |
| 17          | -            |              | Very dense dark grey clayer to                                    | very clayey very fine                       | × × ×     | 1                  | -        |                          | 6.00                   | П          |            |        |            |         | 1       | 1     | Γ                 |                |                |                |      |
|             |              |              | annly SILT. ( White   Imealose                                    |                                             | X.X.      | 111,69             | 6,45     |                          | Ħ                      | 1          |            | 11     | 1          |         |         | 1     |                   |                |                |                |      |
|             |              |              | Ministrately weak to understely<br>medium hedded line to medium   | strong dark gray thinly to                  | H         |                    |          |                          |                        |            |            | H      | 11         |         |         | 1     |                   |                |                |                |      |
| 100         | -            |              | pelietoblal hinturbated LIMEST                                    | INE,<br>Impaigne - Shiptoni                 |           | -                  | -        |                          | Ħ                      |            |            |        |            |         | 1       |       | -                 |                |                |                | 4    |
| 11          | liilleh.     | Indian       | From 7,78 to 7,35m, 8,65 to                                       | 1,00m and 10,20 to 10,40m                   | 1         | Billi              | h Ond    |                          | 7.40                   |            |            | -1     | Diff       | eh La   | o kalir | Q m   |                   |                |                |                | 1649 |
| 13          | ritish       | peologica    | very still dark grey very stily<br>rates result of a still to the | CIAY AND VOLY WORK                          | 田         | Dillu              | III DEUI |                          | 1.500                  | <b>W</b> 1 |            | - 1    |            | 911 146 | 1       | O VUI | F.F.              |                |                |                | 570  |
| - 58        |              | 1 1          | Iteline F. Silm Himestone becomi                                  | ng partly eardy.                            | 田         | 1 2                | L        |                          | 1                      |            |            | 17     | 11         | 1       |         | 1     | -                 |                | 10. WAS        |                | ۲    |
|             |              |              |                                                                   |                                             | 中         |                    |          |                          | H                      |            |            | 14     | 11         | 30      |         |       | 2.72              | 79             | 2,06           | 84             | ž    |
|             |              |              |                                                                   |                                             |           |                    |          |                          |                        |            | 1 1        | - 1    |            |         |         |       |                   |                |                |                | 7    |
|             |              |              |                                                                   |                                             |           |                    | l.       | EHITALIATION             | R. 90                  | A.         |            | - 11   |            |         |         |       | 2.5               | 79             | 1. 07          | 65             |      |
| -           | -            | 1            |                                                                   |                                             | 二         |                    | -        |                          |                        | 1          | 1 1        | - 1    |            |         | 1       | 1     | 1.63              | 79             | 0.92           | 98             |      |
|             |              |              |                                                                   |                                             | 中         |                    |          |                          | i i                    |            |            |        |            |         | 1       |       |                   |                |                |                |      |
|             |              |              |                                                                   |                                             | -         |                    |          |                          |                        |            | 1 1        | 33     | 1 1        |         |         | 4     | 1000              |                | 1.88           |                |      |
|             |              | L            | L_L                                                               |                                             | 모         |                    | -        | тишинини                 | 4                      | l .        |            |        |            |         |         |       | Cabout            | LORG           | Index•         | Çu, 141        | MM/1 |
| 780 .       | Firet -      | ter sirike   | PIEZOMETER 12 Upper s                                             | MANPLE D Se                                 | nell dist | urbed same         | 10 E B   |                          | N volue<br>50, blows f |            | V Vano     | strong | th bR/m    |         |         | inted | BSC. C.E          |                |                | 710            | Ŧ    |
| 7           | Subsequ      | ent water st | Respon-                                                           | e longth · AND · B Be                       | ater sam  | urbed samp<br>iple | V 11     | neitu vane feet driv     | e after sent           | ing        | Cr Cere    | Itemou | id         |         | Dire    | 3033  |                   |                |                |                | 0 1  |
|             |              |              | E 200                                                             | KEY U U                                     |           | ed sample          | C C      |                          | of sealing             |            |            |        | illy deals |         |         |       |                   |                |                | 1>             | 7    |



# BGS ID: 336469 : BGS Reference: SP52NW36 British National Grid (27700) : 454970,226160

Report an issue with this borehole

<<


< Prev

Page 2 of 2 🗸

Next >

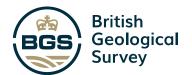
>>

| ENGINE      |           | VE    |          | PARTE               | NERS                                                    | OXFORD TO BIRM                         | -                       | MNEW        | ROUTE    | -OXFORD T                                             | O BANBUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y SECTIO                         | GR       | OUND L     | EVEL   | 10                | 9.83    |        | m 0.0                 | HOLE       | E NO.          | 069      |         |            |
|-------------|-----------|-------|----------|---------------------|---------------------------------------------------------|----------------------------------------|-------------------------|-------------|----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------|------------|--------|-------------------|---------|--------|-----------------------|------------|----------------|----------|---------|------------|
| FIELDW      |           | ٧.    | Froi     | ration              | Associates                                              | 150 mm diamete                         |                         |             | ussion I | Boring - Pil                                          | on Wayfar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er                               | CO       | ANIORO     | TES 4  | 54975             | E       | 226    | 152 N                 | SHEE       | T 2            | OF       | 2       | ,          |
|             |           |       |          |                     | Associates                                              | 105 mm diamet                          |                         |             | ng from  | 1.9 m to 20                                           | .0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | DA       | TES        | 27.6.7 | to 3              | .7.79   |        |                       | Figui      | AE             | ٨        |         | 9          |
| te/Time     | Depth     |       | pth 4    |                     | g post 2                                                |                                        |                         | Strate      |          | Graphical                                             | Representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m Sei                            | pling/   | in situ te |        | 1                 |         | b. Tes |                       |            | ional T        | ests and | d Notes | 35.1       |
| nt<br>Depth | Casing    |       | 0 0      |                     | Description of                                          | Strata                                 | Leg.                    | Reduced     | Depth    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth                            | 1        | No. Ble    | **     | 2 425             | WP      |        | Mg/m <sup>3</sup> kM/ |            | d <sub>h</sub> | I,       | d       |            |
| AVIII       | Casing    | +-    | -        | _                   |                                                         |                                        | -                       | Level       |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 17-      |            |        | - 0               |         | +-     |                       | -1,30      | 74             |          |         | -          |
| - 7         |           | ļ.    |          |                     | White Limestons - Ardle                                 | ne shove)                              | F                       | 107         |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          | 1          |        |                   |         |        |                       | 1          |                |          |         |            |
|             |           | 1     |          | From I              | 6,70 to 11, 25m hard dark                               | grey thinky bedded                     | 田                       |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            |        |                   |         |        |                       | 1          |                |          |         |            |
|             | Billis    | 16    | eo  n    | juinted<br>(Imputed | tilly clay with wtapy land                              | inan of weak pelletoidal               |                         | l Br        | tish Ger |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 1      |                   |         | 5 G    | books                 | Silvey     |                |          |         |            |
| .6.79       |           | 1     | -        |                     |                                                         |                                        |                         |             | -        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ## -                             |          |            | 9      |                   |         |        | postello villo        | 0.71       | 76             | 2.11     | 65      |            |
| 4           |           | 1     | 16       |                     |                                                         |                                        | 井                       |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 1.     |                   | 1       |        |                       | 1          |                |          |         |            |
|             |           | 1     |          | Treesit             | orly thinly interbedded har                             | d dark grey very clayer                | 毕                       | 98.03       | 11 80    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | - 1    | 83                | 13 1    | 5 40   | 1 1                   |            |                |          |         |            |
| -           | -         |       |          | pelletel            | di LANFSTONE very los                                   | siliforous in places.                  | XX                      | 30.03       | 11.00    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,0                             |          | 1          |        |                   |         |        |                       | · •        |                |          |         |            |
| ousse H     | 10210.554 | 1     |          | Manager             | (Hampen N                                               |                                        | XX                      | 97.38       | 19.46    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 99     |                   | 20 2    | 0 51   |                       |            |                |          |         |            |
| .00         | 3,00      |       |          | vertical            | root impressions, (Ham                                  | pen Marly Beds)                        | 70                      | 81.00       | 12,40    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8                             | , U      |            | 8      |                   |         |        | 1 1                   |            |                |          |         |            |
|             | -         | 3.    | 00       | From 1              | 12,75 to 13,88m clay been<br>died with light grey milt. | ening very thinly                      | XXX                     | 4           | -        |                                                       | #####                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.0                             |          |            | 1 01   |                   |         |        |                       | -          |                |          |         |            |
|             |           | ŧ     |          | Fren 1              | 13.00 to 13.40m clay here                               | ming very dark greenish                |                         | 10.20       |          |                                                       | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ##                               | P        | 9          |        | 201               |         |        |                       | 1          |                |          |         |            |
| 1)          |           |       |          | fragme              | nied shells,                                            | Attit adaress or Cost and              |                         |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 97     |                   | 17 1    | 6 46   |                       |            |                |          |         |            |
| 1           | 2         | 1     | 1        |                     |                                                         |                                        |                         |             | _ 14,05  |                                                       | ШШ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.0                             |          | 50         |        |                   |         |        |                       |            |                | •        |         |            |
| 7.79        |           |       |          |                     | triv weak in incidenticly a<br>secondary medium herbied |                                        | 弄                       |             |          | HHHH                                                  | HHIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # 1                              | 12 1     |            | 75     | 1                 |         |        |                       |            |                |          |         |            |
|             |           |       |          | BANIST              | TIME with arms wisps of<br>on clay/sill filled branch   | very stiff green clay                  | 11                      |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 7      |                   |         | 1      |                       |            |                |          |         |            |
| 1           |           |       |          |                     | (Hamp'                                                  | n Mariy Belaj                          |                         |             |          |                                                       | HIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0                             | Ш        |            | 4      |                   |         |        |                       | L          |                |          |         |            |
| Ī           | -         | 1     | 100      |                     | till dark green becoming selded still beroming ver      |                                        | - A                     | 94,93       | 14,90    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.2                             | 5        | N-         | 72     | 92                | 19 1    | 4 50   |                       |            |                |          |         |            |
| 1           |           |       | 12       | Below I             | (Hampe<br>IS, No. becoming very thi                     | n Marly (tedn)<br>nly interhediad with | -X                      |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               | D 1      | 1          | 85     | 1                 |         | 1      |                       | 2,95       | 77             | 4.97     | 65      |            |
| )           |           |       |          | **** **             | rak dark grey muddy pell                                | etoidal limeatone.                     | - <u>T</u> - <u>Z</u> - |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          | 1          | 5      |                   |         |        |                       |            |                |          |         |            |
| 7           | •         |       | V        |                     | 4                                                       |                                        | -2-2                    | 93.53       | 16.30    |                                                       | HHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0                             |          | 1          |        |                   |         |        | 2,50                  | SPT        | no per         | netrati  |         |            |
|             |           | 1     |          | M miera             | tely weak to moderately a                               | trang thinly to medium                 | 王                       |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            |        |                   |         | 1      |                       | 1 39       | 76             | 0.14     |         |            |
|             |           | 1     |          | hedded              | flue to medium grained per<br>Fifth with depth becoming | iletoidal micritle                     | +                       |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ##                               |          |            | 94     |                   |         | 1      |                       | 1.00       |                | (0.000)  | 3.00    |            |
| -           |           | 1     |          | calcare             |                                                         | S(mr)                                  |                         | -           | -        |                                                       | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ###                              |          |            | 4      |                   |         |        | 2,47                  | T .        |                |          |         |            |
| - 8         |           | 10    | eolla    |                     | ity clay and very weak pa                               |                                        | 1                       | I Di        | tick Cor |                                                       | ATTEMPT OF THE PARTY OF THE PAR | ##                               |          |            |        | f                 | l de    | 10     | Nicoli (sl.)          | 0.10       | 76             | 0.23     | 63      | m          |
| 1           |           | 1     | enidă    | MINAN               |                                                         |                                        | -                       | 111         | HOU DOL  |                                                       | <del>           </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ###                              |          |            |        | 1                 | 34      | 0100   | hinfila               | J. 1909    |                |          |         | ¥          |
| 2           | 4         | 1     | - 1      |                     |                                                         |                                        | -                       |             | -        | <b>#####</b>                                          | HHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18,0                             | 1        |            |        |                   |         | 1      |                       | -          |                |          |         | 3          |
| - 8         |           | Į.    |          |                     |                                                         |                                        | 一                       |             |          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                             | ×        |            |        |                   |         |        |                       | 0.53       | 75             | 1,42     | 75      | N          |
|             |           |       |          | į.                  | 2                                                       |                                        | 田                       |             |          |                                                       | HHIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |          |            |        |                   |         |        |                       | 1          |                |          |         | 192        |
| -           |           | 1     |          |                     |                                                         |                                        |                         |             | -        |                                                       | ######                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ##                               |          |            | 8      |                   |         |        | 2.53                  | -          |                |          |         | 9          |
|             |           | 1     |          |                     |                                                         |                                        | 포                       |             |          | HILLIIII                                              | HHHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ш                                |          |            | 4      | 1                 |         |        | 1 1                   |            |                |          |         |            |
|             |           | 1     |          |                     |                                                         |                                        | 7                       |             |          |                                                       | шшш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |          |            |        |                   |         |        |                       | 1,09       | 73             | 2,58     | 71      |            |
| 00          | 3,00      | 7.    | 00       |                     |                                                         |                                        | END                     | 89,83       | 20.00    | HIIIIIII                                              | шшш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                             | ,        |            |        |                   |         |        |                       | (*Poir     | t Los          | d Inde   | <0,10   | MN/t       |
| TER 7       | First w   | 101   | trike    | PIE                 | EZOMETER MUPPER                                         | SAMPLE D                               | meli disi               | lurbed semp | ie & Re  | lbry core                                             | Blows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N = N value<br>26/150, blows     | I 100    | ,          | Vana : | trength<br>oture! | kN/m²   |        | J. Tiplas             | BSC. C.E   | na Fir         | e eine   | FIG     | N F        |
| V           | Subseq    | pent  | enter st | kee .               | Response                                                | of TEST W                              | rater sem               | erbed samp  | V Int    | covery to scale<br>tits vane test<br>enders penetrali |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drive after se-<br>18", blows to | iing     |            | Core   | emould            |         |        | Director              | G.E        |                | -,       |         | SHEET 2 OF |
|             |           |       |          |                     |                                                         | KEY U I                                |                         | ed sample   | C C      | me penetration t                                      | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | whole of sest<br>(78) Undisturb  | ng drive | only F     | OD Rec | i quelli          | destant | 1100   |                       | oed Const  | melle-         | DAN:     |         | 7          |
| -           | depths    | . 100 | els and  | hickness            | es in metres                                            | 's taper inter-                        |                         |             | î in     | rmeability test                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plem Codul                       |          | 8          | 425)   |                   |         |        |                       | dington Re |                |          | 1 1     |            |



# BGS ID: 336469 : BGS Reference: SP52NW36 British National Grid (27700) : 454970,226160

Report an issue with this borehole


<< | < Prev

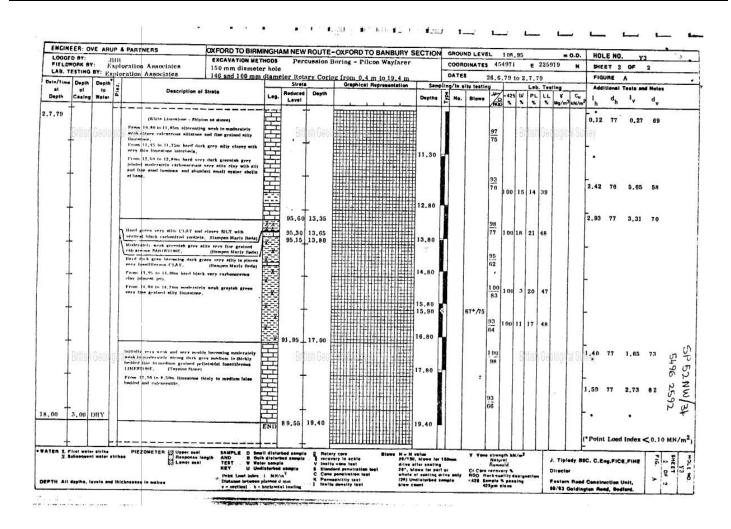
Page 1 of 2 🗸

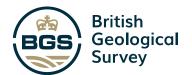
Next >



|           |            | E ARL       | P & PAR     | NERS                                                    |                             |                           |           |          | -OXFORD TO BANBURY S      | ECTION                   | GROUN       | D LEVEL     | 1        | 109.8  | 3      | m C      | D.D.           | HOLE            | NO.    | 0    | 69      |        |
|-----------|------------|-------------|-------------|---------------------------------------------------------|-----------------------------|---------------------------|-----------|----------|---------------------------|--------------------------|-------------|-------------|----------|--------|--------|----------|----------------|-----------------|--------|------|---------|--------|
| FIELD     | MORK BY    | . Va        | nlosatios   | Associates                                              | 150 mm diamet               |                           | Perc      | ussion l | Boring - Pilcon Wayfarer  | 7.77                     | COORD       | HNATES 45   | 4975     |        | E 226  | 152      | N              | SHEET           | 1 0    | 0F   | 2       | - 1    |
| LAB. T    | ESTING     | eY: Ex      | ploration   | Associates                                              |                             |                           | ry Corl   | ng from  | 1,9 m to 20,0 m           |                          | DATES       | 27.6        | .79 to   | 0 3.7  | .79    |          |                | FIGURE          |        | A    |         |        |
| Date/Time | Depth      | Depth       | 4           |                                                         |                             | L.,                       | Strate    |          | Graphical Representation  | Sam                      | pling/In al |             | 1        |        | ab. Te | eting    | _              | Addition        |        | _    | d Notes |        |
| Depth     | Casing     | to<br>Water | ā           | Description                                             | of Streta                   | Leg.                      | Reduced   | Depth    | l                         | Depths                   | No.         | Blows 70    | 425      | WF     | 1 LI   | . 8      | C <sub>U</sub> | al <sub>h</sub> | h      | I,   | ď       |        |
|           | †          |             |             | Transcal                                                |                             | 200                       | 109,83    | 0.00     |                           | 0.00                     | U- 1        | (37)        |          |        | _      | 1        |                | -               |        | _    | -       |        |
|           |            |             | press       | folially dark orange brown<br>alog light grey very clay | V raintenant BIT -III       | 22                        | 100,63    | 0.20     |                           |                          | H I         |             | 66       | 12 1   | 6 25   | d I      |                |                 | 50     |      |         |        |
|           | FRENTINGS  |             | Rome        | light brown Hmesteer gr<br>(Collavium/Weather)          | nvel.                       |                           |           | 00-7-1   |                           | 0.50                     | D 2<br>U 3  |             |          | -      |        |          |                |                 |        |      |         |        |
| -         |            |             | Below       | I John clay and silt wit                                | an Increasion months.       | =××                       |           | PHOEN    |                           | 1.00                     | 5 4         | (80)        |          |        | SHOE   | HUU I    |                | E87             |        |      |         |        |
| 7.6.79    |            |             |             | eretone gravet and costile                              |                             | * X X                     |           | 1        |                           |                          | 11 5        | (85)        | 47       | 11 1   | 3 2    | 1        |                |                 |        |      |         |        |
|           |            |             |             |                                                         |                             | 255                       |           |          |                           | 1.50                     | D 6         |             |          |        |        | 1 1      |                | 1               |        |      |         |        |
|           |            |             | Mirrie      | rainly weak to musicrately                              | Africa Balaka               | <del>- 1924</del>         | 107.93    | 1.90     |                           | 1,90                     | U 7         | (120)       | 2        | 9      |        | 1 1      |                | ı               |        |      |         |        |
|           |            |             |             | ly highly fractured become<br>fine to medium grained    |                             |                           |           |          |                           | 2.00                     | M I         | 0           |          | -      |        |          |                | t               |        |      |         |        |
|           |            | 1           | pellet      | pirini hipinghated LIMEST                               | DNK.                        | 井                         |           |          |                           |                          |             | 65          |          | -      |        | 1 1      |                | 1               |        |      |         |        |
|           | L. 1       |             | Free        | 4.10 to 4.20, 4.60 to 4.                                | nestme - Ardley)            | 1                         |           |          |                           | 2.80                     |             | 1 "         |          |        |        | 1        |                | 1               |        |      |         |        |
| 8.00      | 3.00       | rate se     | nrang       | ine moirralely weak mo                                  | icrately weathered          | 1                         |           | -        |                           |                          | W 1         | 44          | 1 1      |        |        |          |                | -               |        |      |         |        |
| 08.00     | 3,00       |             | Fren        | 5,56 to 5,25m limestone<br>sparry with thick walled     | moderately strong grey      | 1                         |           |          |                           | 3.35                     |             | 0           |          |        | - 8    | 1 1      |                | 1               |        |      |         |        |
|           |            |             | Relow       | 6, then Horntone with tr                                | remiler vertical adulta-    |                           |           |          |                           | 3.70                     |             | 80          |          |        |        |          |                | 1,20 7          | 2      |      |         |        |
| 25        | -          |             | Below       | 5.50n lineatone very ex                                 | enment altebile seeds       | 1                         |           | -        |                           |                          | m I         | 1.          |          |        |        | 2.50     |                | 0.32 7          | 5 0    | .79  | 71      |        |
| 1         |            |             | At 7.1      | On cone of solution lead                                | and shalls.                 | 1                         |           |          |                           | 60                       |             |             | 1 1      |        |        | 1 1      |                |                 |        |      |         |        |
|           |            |             | 11          |                                                         |                             | -                         | 1         |          |                           |                          |             |             |          |        |        |          |                | 1               |        |      |         |        |
| 8.6.79    |            |             | 4           |                                                         |                             |                           |           |          |                           |                          |             | 83          | 1 1      |        |        |          |                |                 |        |      |         |        |
| 8.6.79    |            |             | #           |                                                         |                             |                           | 1         |          |                           |                          |             | 54          |          |        |        | 1 1      |                | -               |        |      |         |        |
|           |            |             | 31          |                                                         |                             |                           |           |          |                           |                          |             |             | 11       |        | 1      | 1 1      |                | 2.63 7          | 5 1    | 64   | 74      |        |
|           |            |             | <b>3</b> 3  |                                                         | 8                           |                           | - 1       | 1        |                           |                          |             |             | Н        |        |        |          |                |                 |        |      |         |        |
|           | -          | - 1         | 49          |                                                         |                             |                           |           | -        |                           | 5.90                     | H           |             |          |        | 1      | 1 1      |                | -               |        |      |         |        |
|           |            |             | -11         |                                                         |                             |                           |           |          |                           |                          |             |             | П        |        | 1      | 1 1      |                |                 |        |      |         |        |
|           |            |             | ]           |                                                         |                             | 田                         | - 21      |          |                           |                          |             | 90<br>25    | 11       |        |        | 1 1      |                | 2.04 7          | 5 0.   | .70  | 100     |        |
| 8.00      | 3,00       | . 00        | 1           |                                                         | -                           | 田                         | 100 00    |          |                           |                          |             | 25          | 1        |        |        | 1 1      |                | _               |        |      |         | (      |
| M. 00     | 3,00       |             | SILT.       | hecraning a very still ve                               | mn riarry calcareone        | 2 2                       | 102.68    |          |                           | 7.25                     |             |             | 1 1      |        |        | 1        |                |                 |        |      |         | 1 0    |
|           | Britis     | Geold       |             | (White                                                  | Limestone - Phiptoni        |                           | 02,23     | 7,00     |                           |                          |             | 93          | 1        | Bit    | SI 68  | Modida   |                | NET .           |        |      |         | EF     |
| 1         | .          |             | ered marsh  | entely weak to preferately                              | preincel migritic vectories |                           | 1000      |          |                           | 8.00                     |             | 76          |          |        |        | -        | 10000          | 2,03 7          | 6 2.   | .10  | 58 0    | TI     |
| 6.79      |            |             | pelle       | A.S. to 4,250 hard dar                                  | F Limestone - Shinton)      |                           |           |          |                           | 6.00                     |             |             | 11       |        |        | 1 1      |                |                 |        |      |         | 2 4 6  |
|           |            |             | Fram        | 8,78 to 10,30m muterate                                 | ly week to moderately       | -                         | - 1       |          |                           | 1                        |             | 99          | П        |        |        | 1 1      |                |                 |        |      |         | 2 pp 3 |
|           |            |             | 3           | g fine grained silty calca                              | reous Sandslone,            |                           | - 1       |          |                           | B.90                     |             | 68          | 1 1      |        |        | 1 1      |                |                 |        |      | - 3     | 200    |
| +         | .          | 1           | 9           |                                                         | (9                          |                           | +         | •        |                           | n. 90                    | T I         |             | 11       |        | 1      | 1 1      |                | 0.17 76         | 0.     | 36   | 91      | 0      |
|           | 1          | - 1         |             |                                                         |                             |                           |           |          |                           |                          |             |             |          |        |        | 1 1      | - 3            | ACTORN MIS      |        |      |         |        |
| 1         |            | - 1         | 1           |                                                         |                             |                           |           |          |                           |                          |             |             |          |        |        | 1        | - 19           | 0,17 76         |        |      |         |        |
| -         | .          | 1           |             |                                                         |                             |                           | -         | -        |                           |                          |             |             |          |        |        | 1 1      |                | (*Point L       |        | -    | <0.10   | MN/m2  |
| ATER I    | First wate | e etribe    | PI          | ZOMETEN Upper ser                                       |                             | ati distar                | bed sampl | e g Re   | lary core Blows N = N     | value                    |             | V Vane stre |          | 1/m²   | 1      |          | _              |                 |        |      | 7       | - 5    |
| 2.1       | - Appedes  | I WOTER     | er-Ree      | Lawer se                                                | I TEST W W                  | uik disturb<br>stor sampl | •         | . Y Ins  | ilu vane lest drive :     | ), blows to              |             | Non         | wrel     |        |        |          |                | ISC. C.Eng.     | FICE,  | FIHE | P       | 20     |
|           |            |             |             |                                                         | REY U U                     | ndisturbed                |           | C CM     | ne penetration test whole | ows for pa<br>of spating | drive only  | ROD Rocks   | unlile d | velgne | tion   | Director |                |                 |        |      | >       | 0 7 8  |
| -         | deaths.    |             | d thickness | es in metres                                            | To fance hoter              | olate:                    |           | K Per    | mosbility test (28) U     | bedruts !!               | sample      | 425 Sample  | % pee:   | eing   |        | Fastern  | Res            | d Constructi    | on Uni | H.   | 1 1     | N      |




### BGS ID: 336467 : BGS Reference: SP52NW34 British National Grid (27700) : 454960,225920


Report an issue with this borehole

< Prev Page 2

Page 2 of 2 V Next >

>>

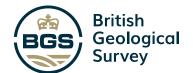




# BGS ID: 336467 : BGS Reference: SP52NW34 British National Grid (27700) : 454960,225920

Report an issue with this borehole

<<


< Prev

Page 1 of 2 🗸

Next >



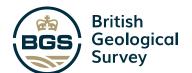
|           |                      | VE AHU                    | a PA       | ATNERS                                                                                                              |                                              |                                                        |                              |         | -OXFORD TO BANBURY S                                                         | ECTION                                               | POUND LE      | VEL 1                                               | 08.95     | m O.D.                                          | HOLE NO. Y                     | 1              |
|-----------|----------------------|---------------------------|------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------|---------|------------------------------------------------------------------------------|------------------------------------------------------|---------------|-----------------------------------------------------|-----------|-------------------------------------------------|--------------------------------|----------------|
| FIELDW    |                      | , JI                      |            | llon Associates                                                                                                     | EXCAVATION ME                                | THODS                                                  | Percus                       | sion Bo | ring - Pilcon Wayfarer                                                       |                                                      | COORDINAT     | ES 4549                                             | 71 E 2    | 25919 N                                         | SHEET ) OF                     | 2              |
| LAB. TE   |                      | Carry Control             |            | Ion Associates                                                                                                      | 150 mm diame                                 |                                                        |                              | ary Cor | ing from 0,4 to 19,4 m                                                       | - 7                                                  | TATES         | 26.6,79                                             | to 2.7.79 |                                                 | FIGURE A                       |                |
| Date/Time | Depth                | Depth                     |            |                                                                                                                     |                                              |                                                        | Strete                       |         | Graphical Representation                                                     | Samplin                                              | g/in situ ter |                                                     |           | esting                                          | Additional Yests and           | Holes          |
| Depth     | Cooling              | lo<br>Water               | -          | Description of                                                                                                      | Sirola                                       | Leg.                                                   | Reduced<br>Level             | Depth   |                                                                              | Depths                                               | No. Blo       | . 7                                                 |           | L Y Cu<br>% Mg/m <sup>3</sup> kN/m <sup>3</sup> | Ih dh ly                       | d <sub>y</sub> |
| 7,6,79    | -                    |                           | 1          | Tribacit                                                                                                            |                                              | XXX                                                    | 108.95                       | 0,00    |                                                                              | s                                                    |               |                                                     |           |                                                 | SPT no penetrat                | ion.           |
| 8,00      | NII.                 | DRY<br>DRY                | A shit     | ingular to subremeded CISINI,R:<br>is injectify limestone with some<br>an sifty clay, (Culturium                    | firm dark reddish                            | 200                                                    |                              | sh Geo  |                                                                              | 0.40 ()                                              | 1             | 75                                                  | Britishic | edodo Su                                        | Core diameter 1                |                |
| 7.6.79    | -                    |                           | -          | lerately atoms white highly fra                                                                                     |                                              | 100                                                    | 107.75                       | 1,20    |                                                                              | 1.30                                                 |               | 50                                                  |           |                                                 | -                              |                |
|           |                      |                           | Irne       | tured thinky bedded fine grains<br>arealtic aparry LIMESTERS.                                                       | d lined collic and                           | 铝                                                      |                              |         |                                                                              | 1.60                                                 |               | 83                                                  |           |                                                 | Core diameter i<br>below 1,60m | educed         |
| 8.00      | . 50                 | 0.00                      | erent      | m 2,75 to 2,85m weak light or<br>temperatic calcarress attistone                                                    | The second of the second                     | 呂                                                      | •                            |         |                                                                              |                                                      |               | 77                                                  |           |                                                 | 2,68 76                        |                |
| 8.00      | 1.50                 |                           | roll       | n: 3,35 in 2,50m Hardground/ord sateritic primites and wispy                                                        | iron staining.                               | 盅                                                      | 106,00                       | 2.90    |                                                                              | 2.60                                                 |               |                                                     |           |                                                 | 3,46 77 3,34                   | 77             |
|           |                      |                           | hest       | lerniets weak to moderately str<br>led initially moderately fractur<br>etoidal micritic bioturbated Lii             | ed line grained                              | 臣                                                      | •                            |         |                                                                              |                                                      |               | 90                                                  |           |                                                 | -                              |                |
|           | _                    |                           | Fro        | (White Lin<br>m 3,10 to 4,00m leregular we<br>t,                                                                    | entone - Ardley)<br>tical solution weathered | 星                                                      | _                            |         |                                                                              | 3.80                                                 |               |                                                     |           |                                                 |                                |                |
|           |                      |                           | Fro        | er a to to \$ .50m limestone ner                                                                                    | repeix,<br>ege and orange brown              | 呈                                                      |                              |         |                                                                              |                                                      |               | 95                                                  |           |                                                 | 0.85 75                        |                |
| .6.79     |                      |                           | tiel-      | to medium grained very peliel<br>rry walled shells,<br>nw 6 Sun limestum becoming<br>highly heided and increasingly | very compact madium                          | 臣                                                      |                              |         |                                                                              | 4.80                                                 |               | 1.                                                  |           |                                                 | 1,25                           | 78             |
|           |                      |                           | Fre        | on 1,70 to 1,50m limestone me<br>minutes casts of shells,<br>ow 7,50m week initially weath                          | vicrately weak orange                        | 用                                                      |                              |         |                                                                              |                                                      |               | 95<br>45                                            |           |                                                 |                                |                |
| +         | •                    |                           | dari       | k grev very silty calcarenus s                                                                                      | undAthere,                                   | 臣                                                      | ŀ                            | -       |                                                                              | 5.80                                                 |               |                                                     |           |                                                 | 0.20 75<br>2.63 75 1.97        | 74             |
| 1         |                      |                           | 1          |                                                                                                                     |                                              | 呂                                                      |                              |         |                                                                              |                                                      |               | 93<br>64                                            |           |                                                 |                                |                |
| +         | .8                   |                           |            |                                                                                                                     |                                              | 宝                                                      |                              |         |                                                                              | 6.80                                                 |               |                                                     |           |                                                 | 2.70 72 2.28                   | 75<br>V) 01    |
| 8.00      | 3,00                 | DRY                       |            | unley                                                                                                               |                                              | 耳                                                      | HIII                         | SN 1580 |                                                                              |                                                      |               | 98                                                  |           |                                                 | 18)                            | 55             |
|           | 3.00                 | 6,70                      |            | of dark gray very alliv CLAY<br>oming black and carbonaceous<br>(White Lim                                          | and clayey RILT                              | ₹-7-<br>1-12-K                                         | 101.05                       |         |                                                                              | 8.00                                                 | 100           | 95                                                  |           |                                                 | -                              | 29             |
| .6.79     |                      |                           | 161        |                                                                                                                     | ned pelictoidal micritic<br>atoms - Shipton) | 選                                                      |                              |         |                                                                              | 8.80                                                 |               | 40                                                  |           |                                                 | 1.32 77 1.47                   | 592            |
| 1,00      | 3,00                 | 0.00                      | least .    | on \$.55 to 8.65m week to mode<br>letoidal calcareaus siltatose.                                                    | rately weak clayey                           | 田                                                      |                              |         |                                                                              |                                                      |               | 99                                                  |           |                                                 |                                | 180            |
|           | 3,00                 |                           | <u>_</u> _ |                                                                                                                     |                                              | 耳                                                      |                              | -       |                                                                              | 9.80                                                 |               |                                                     |           |                                                 | (*Point Load Index             | <0.10 MN/n     |
| ATER T    | First wa<br>Bubseque | ler etrike<br>ini waler s | irikes     | PIEZOMETER   Upper seel                                                                                             | rest W                                       | Lmail diete<br>Bulk dieter<br>Water samp<br>Undieterbe | ted sample<br>to<br>d sample | V Inc   | overy to scale 28/15<br>illu vame test drive<br>indent penetration lest 281, | value 0, blows for 19 silor senting flows for part o | Omma<br>r Cri | Vane strangti<br>Matural<br>Remoul<br>Care recevery | 4         | J. Tipledy B                                    | BC. C.Eng.FICE,FIHE            | FIG 2          |



# BGS ID: 336464 : BGS Reference: SP52NW31 British National Grid (27700) : 454930,225390

Report an issue with this borehole



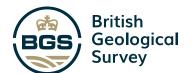

< Prev

Page 2 of 2 🕶

Next >



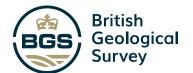
| FIELD                     | D BY:                  |              | (<br>loratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXCAVATION ME                                                                                                                                                                                    | THOOS                                 | Rota        | ry Corin                                  | -OXFORD TO BANBURY S                                                            |                                                                                               | _     | D LEVEL                           | -                                 | -                             | 03.0    | -     | 25371              | 0.D.           | -                 | E NO.    |              | Y 2     | _        |
|---------------------------|------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|-----------------------------------|-----------------------------------|-------------------------------|---------|-------|--------------------|----------------|-------------------|----------|--------------|---------|----------|
|                           |                        | •1           | loratie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 mm orame                                                                                                                                                                                     | ter no                                |             |                                           | n G.L. to 20.0 m.                                                               |                                                                                               | DATES | 31                                | 1.5.                              | 79 t                          | 0 1.    | 6.75  | ,                  |                | FIG               | URE      | A            | -       |          |
| ate/time<br>at<br>Depth   | of                     | Depth        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Strata                                                                                                                                                                                           | -                                     | Reduced     | _                                         | Graphical Representation                                                        |                                                                                               |       | u testing                         |                                   |                               | w       |       | eating<br>L 8      | C <sub>u</sub> | Add               | tional ' | Tests &      | d Notes |          |
| Depin                     | Cooling                | Water        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  | Leg.                                  | Level       |                                           |                                                                                 | Depths                                                                                        | No.   | Blows                             | 100                               | 4                             |         |       |                    | kN/m           | I'h               | dh       | 1,           | ď       |          |
| 11.5,79<br>20,00<br>08.00 | -8/105<br>3,00<br>3,00 | 9,00<br>3,60 | From grafe From grafe From fonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In Junetime — Shipina as also delited in Junetime — Shipina as also delited in Junetime 11, 30s to 11, 31s to  | 30m, 12,25 to 12,35m,<br>to very stilf to hard<br>very calcareous silt,<br>initially very fine<br>me pellat content,<br>silty mislerately<br>wood fragments,<br>dark grey pollatoidal<br>latene. |                                       | 0)          | ish Ge                                    |                                                                                 | 11.90                                                                                         |       |                                   |                                   | 100                           | 12 1    | 15  1 | Gelling<br>12      |                | 2,13              | 75       | 1,69         | 71      |          |
| 6.79                      |                        |              | M retre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atiff to hard dark grey and guilty to places pelletoidal 11.A shells. Hampen Marly He shells. Hampen Marly He haddy week hecoming modera h genes fine grained calcura-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V with some small                                                                                                                                                                                |                                       |             | _13.90<br>_15.00                          |                                                                                 | 14.90 😅                                                                                       |       | 10*                               | 80                                |                               | 13 1    |       |                    |                | 3.11<br>-<br>SPT  |          | 2.58         |         |          |
|                           | District               |              | Very of foundity very diverted to the total policies to policies to the total very diverse to th | al coot impressions, (limpe<br>seek dark gree, claye) line<br>fermis and in places carbonocense alive<br>ark grey rarbonocense alive<br>(limpe<br>mortenels) went dark grey<br>mortenels went dark grey<br>mortenels went dark grey<br>mortene grand very morten<br>lide [1017370HF with some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | andy RLISTONE very<br>rous incoming a hard<br>"LAY,<br>n Marly Beds)<br>hinly to medium hedded<br>incoming natestite<br>rry, this instands of                                                    |                                       |             | -<br>16.25<br>- 17.10<br>IIISh Ĝe         |                                                                                 | 16.00                                                                                         |       |                                   | 9                                 | 00                            | 18 2    | 0 55  | 2,65               |                | 3.69<br>-<br>0.57 | 75<br>74 | 6,85<br>0,93 |         | 24c      |
| 8.00                      | 3,00                   | 11,00        | stelow<br>weak to<br>me-fluo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17. P. this Homestone incoming in materialty at runs grantly at runs thinky to, a grained resistic and calcarent p. p. think to the property of the property o | ight grey moderately<br>nedlum hedded<br>tic.                                                                                                                                                    |                                       |             |                                           |                                                                                 | I                                                                                             |       | ;<br><u>6</u> 3:                  |                                   |                               |         |       | 2.52               | -              | •                 |          | 1,88<br>1,15 |         | 193 2539 |
|                           | ubtoquen               | l water et   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EZOMETER Upper seel Parponse le Lower seel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEST W Wat                                                                                                                                                                                       | it disturi<br>for sample<br>disturbed | sample<br>2 | Q Rata Frace V Instit S Stan C Com K Perm | u vano test drive :<br>ford ponetration test 24°, b<br>- ponetration test whole | ), blows for 150<br>ifter seating<br>lows for part or<br>of seating drive<br>reliatorhed same | only  | Cr Cors ::<br>ROD Roc<br>-425 Som | Naturi<br>Temou<br>scrve<br>k qua | ol<br>old<br>oy %<br>filly de | e) pnai | ion   | J. Tipi<br>Directo | edy Bi         |                   | y.FICE   | ,FIHE        | P.      | 3 ET Y:  |




# BGS ID: 336464 : BGS Reference: SP52NW31 British National Grid (27700) : 454930,225390

Report an issue with this borehole

<< | < Prev | Page 1 of 2 v | Next > |


|         |          |             | & PARTN     | ERS                                                        | OXFORD TO BIRMI                       | NGHA       | M NEW            | ROUTE    | -OXFORD TO BANBURY S          | ECTION       | GROUP          | ND LEVE   | EL.           | 103.0     | 7   |          |        | 0.0.                    | HOLE NO.                                     | Y 2            |
|---------|----------|-------------|-------------|------------------------------------------------------------|---------------------------------------|------------|------------------|----------|-------------------------------|--------------|----------------|-----------|---------------|-----------|-----|----------|--------|-------------------------|----------------------------------------------|----------------|
| FIELDW  |          | Exp         |             | Associates                                                 | EXCAVATION MET                        |            |                  |          | g - Dando 220 Rig.            |              | COOR           | DINATES   | 654           | 947       |     | E £2     | 5371   | н                       | SHEET I OF                                   | 2              |
|         |          |             | leration /  | Associates                                                 | 105 mm diamete                        | er Rot     | ary Cor          | ing from | m G.1., to 20.0 m.            |              | DATES          | s 3       | 1.5.          | 79 to     | 1.  | 6.79     |        | _                       | FIGURE                                       | A              |
| 1+/11me |          | Depth .     |             | 32c (2008) 40                                              | 3                                     |            | Strata           |          | Graphical Representation      | Samp         | ing/in e       | tu testin | 19            |           | L   | .b. T.   | ating  |                         | Additional Tests a                           | nd Holes       |
| epih    | Casing   | Vater 0     |             | Description of                                             |                                       | Leg.       | Reduced<br>Level | Depth    |                               | Depths       | No.            | Blows     | 1/2           | <425<br>% |     | L LL     | Mg/m   | Cu<br>kN/m <sup>2</sup> | Ih dh Iv                                     | d <sub>v</sub> |
| 48      |          | •           |             | Torsini.                                                   |                                       | <b>***</b> | 103.07           |          |                               | 0.00         | U 1            | (9)       |               |           |     |          |        |                         | -                                            |                |
|         | j 1)     | P           | with City   | tuning stiff greateh and o                                 | reione gravel.                        | A          |                  | 0,00     |                               | 0.45         | 0 2            |           | 1             | 100 1     |     |          | 2.17   |                         |                                              |                |
|         | Britis   | Geolda      | la Sine     | it officerium/ Weather                                     | red White Limitatore)                 |            | Bri              |          |                               | 0.50<br>0.75 | b 3            | (30)      |               | 1 00 1    | R 3 | 4 37     | 1.78   | 18                      | VEV                                          |                |
| -       |          |             |             |                                                            |                                       | Δ          | ' 1              |          |                               | 1,00         | 11- 5          | (26)      | 1             |           |     | 9 96     | 1.72   | 30                      | -1                                           |                |
|         |          | - 11        |             |                                                            |                                       | K          | 101.47           | 1.60     |                               | 1:40         | D 8            | (30)      | 1 3           |           |     | 13 99    |        |                         | Failed U 102                                 |                |
|         |          | - 11        |             | very weak very light grey proflered and sheared become     |                                       | 苗          |                  |          |                               |              | D 8            |           | 1             | 1 00 2    | 9   | 9 53     |        |                         | 7                                            |                |
| -       |          |             | Dight to di | nek orange mederalely was<br>out alightly pelletoidal micr | thered highly (ractured               |            | +                | Ť.       |                               |              | n 9            |           | 100           |           |     |          |        |                         | 1,33 74                                      |                |
|         |          | - 11        |             | (Weathered White Limesto<br>II to 2,50m Houselone mode     | ne - Hindon)                          | #          | 9                |          |                               |              | 3              |           | 311           |           |     | 4        |        |                         | 1,33 74                                      |                |
|         |          | - 11        |             | ly strong thinly broked with                               |                                       |            |                  |          |                               |              |                |           |               |           |     |          | 2,43   | 1                       | 150                                          |                |
| -       |          | - 13        | Itelm ?     | ton limestone weak orange of                               | ned grey mottled with [               | -          | 100.07           | 3.00     |                               | 3.00         | d              |           | 1             | П         |     |          | 2.56   |                         | 2,75 74                                      |                |
|         |          | - 11        |             | lined ground/erosion surf                                  |                                       | 王          |                  |          |                               |              | ı              |           | 1             |           |     |          | 2.50   |                         | 2.10                                         |                |
|         |          | - 11        | M mierate   | ly strong becoming moder                                   | sirly weak to moderately              | +          | 1                |          |                               |              | 1              |           | 1             |           |     |          |        |                         |                                              |                |
| -       | 1        | - 11        | strong or   | ry light brown thinly to m<br>decitic and pelletoidal 1.0  | relium hedded fine                    | 王          | +                | •        |                               |              |                |           |               | 1         | 1   | 1        |        |                         | 0.86 74 0.6                                  | 2 78           |
| 5,79    |          | - 11        | -           | (White Limestone - Acdi                                    | layer calcareous                      | 1          | 1                |          |                               |              |                |           | 94<br>56      |           | 1   |          | 1      |                         |                                              |                |
|         | 1        | - 11        | Below 5     | Ohn Huestone becoming a                                    | rey.                                  | 王          |                  |          |                               |              |                |           |               |           |     |          |        | 1                       |                                              |                |
| 4       | . 1      | - 11        | Iteles 7    | Tim limeatone thickly load<br>with thick sparry-walled a   | ded compact sandy                     | H          | -                | •        |                               |              |                |           |               | 1         |     | 1        |        |                         |                                              |                |
|         | 1        | - 1         | finest are  | tim limestone very sandy<br>is at A.Gim.                   | with faintly leached                  | $\pm$      | 1 .              |          |                               | 5.50         |                |           | 1 1           |           |     |          |        |                         | 1,15 74 0,8                                  |                |
| - 1     |          |             |             |                                                            | 24                                    | -          | - 1              |          |                               | 3.30         | n I            |           |               |           |     |          |        | 1                       | Slight scepage a                             | 1 5.5 m.       |
| 4       |          | - 11        |             |                                                            |                                       | 王          | 4                | 2)       |                               | . 1          |                |           |               |           | 1   |          |        |                         | L                                            |                |
| - 1     | 1        | - 11        | i i         |                                                            |                                       | #          |                  |          |                               |              |                |           | 100           |           | 1   |          |        | 1 3                     |                                              |                |
|         | 1        | Ħ           | 1           |                                                            |                                       | 干          |                  |          |                               |              |                |           | 48            |           |     |          |        |                         |                                              |                |
| 4       | . 1      | 又           |             |                                                            |                                       | +          | 1                | 6 9      |                               | 7.00         |                |           | 1 1           |           | 1   | 1        |        |                         | - Stendy flow belo                           | w 7 0 m        |
|         |          | 4           |             |                                                            |                                       | <b>—</b>   | 1                |          |                               |              |                |           |               |           | 1   | 1.       |        |                         | 1.04 74 3.22                                 |                |
|         | Britis   | Geo M       | tal Sunk    |                                                            |                                       | T          | Bill             |          |                               |              |                |           |               |           | Hi  | IS II GE | ologi  | a 81                    | Ney.                                         | (52) (1350)    |
|         |          | 1           |             |                                                            | ×                                     | -          |                  | .:       |                               |              |                |           |               |           |     |          |        |                         | 1,12 75 1,88                                 | 81 Y F         |
|         |          | B           |             |                                                            |                                       | 1          | T                |          |                               | 1            |                | 7         | 97            |           | 1   |          |        |                         |                                              | 27             |
|         |          | 1           |             |                                                            |                                       | 7          | 200000           |          |                               |              |                |           | 239           |           | 1   | 1        |        |                         |                                              | 2,4            |
|         |          |             | thickly he  | y weak in mulerately atro<br>ided the in medium grains     | d micritic pelicidal                  | -          | 94.32            | 8.75     |                               | 9.00         |                |           |               |           |     |          |        |                         | *                                            | 25             |
| T       |          |             | biomelinie  | I LIMPSTONE, (WHILE LA                                     | mestrus - Phipton)                    | T          | T                |          |                               |              |                |           |               |           | 1   | 1        |        | 1                       | -                                            | w 04           |
|         |          |             |             |                                                            |                                       | 士          | - 1              |          |                               |              | 4              | i i       |               |           |     | 1        |        |                         |                                              | A 70           |
|         |          |             |             |                                                            |                                       | 二十         |                  |          |                               |              |                | 10        | 87            | 100 1     | 7 1 | 5 42     |        |                         | 1,14 75                                      |                |
|         | Irel wet |             |             | OMETER EN Upper seel                                       | SAMPLE D See                          | all dist   |                  |          | Inry core Blues N - N         |              |                | u v       |               |           |     | 1        |        |                         | (* Point Lord Ind                            |                |
| у,      | mpseque  | nt water of | lkes        | Response to                                                | ingth AND . B But                     | ik dieturb | ed pample        | 1 100    | every to scale 20/19          | ), blows for | 1 <b>60</b> mm | V V.      | Mate          | egth kN/  |     | 1        | J. Tip | ledy B                  | SC. C.Eng.FICE,FIHI                          | 7 7 7          |
|         |          |             |             | 20                                                         | KEY U-Und                             | Heterbed   | semple           | 2 Ste    | ndard ponetration test 25°, b | iows for par | 1 00           | Cr Cen    |               |           | -1  |          | Direct | or                      |                                              | > 07           |
|         | d        |             | hicknesses  | TO LONG TO                                                 | Print Load Indea<br>Historice between | 1 MN/n     |                  | K Per    | rmeability test (26) U        | ndisturbed : | ample .        | - 426 S   | ample<br>25pm | *         | ing |          |        |                         | d Construction Unit,<br>agton Road, Bedford. |                |



# BGS ID: 336950 : BGS Reference: SP52SW64 British National Grid (27700) : 454910,224620

Report an issue with this borehole

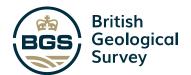
| ENGINE   | ER OV    |            |       | PARTNERS OX                                                                                            | FORD TO BIRMIN                                                                                                                                                    | IGHA     | M NEW            | ROUTE-         | -OXFORD TO                                                                              | BANBURY S     | ECTION                                   | GROUN       | O LEVEL            | 1 (     | 3,38      |       |           | 0.D.               | HOLEN       | 10.            | 068       | 5      |
|----------|----------|------------|-------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------------|-----------------------------------------------------------------------------------------|---------------|------------------------------------------|-------------|--------------------|---------|-----------|-------|-----------|--------------------|-------------|----------------|-----------|--------|
| LOGGE    |          | . Ex       |       |                                                                                                        | XCAVATION METHO                                                                                                                                                   |          |                  |                | - Dando 22                                                                              |               |                                          | COOR        | DINATES            |         |           |       | 24608     | N                  | SHEET       | 2 OF           | 22        |        |
| LAB. TE  | STING    |            |       | ration Associates                                                                                      | 105 mm diameter                                                                                                                                                   | r Rot    |                  |                |                                                                                         |               |                                          | DATES       |                    | 5.79    | to 30     |       |           |                    | FIGURE      |                |           |        |
| ele/Time | Depth    | Depth'     | 4     | 2 1000 2200                                                                                            |                                                                                                                                                                   |          | Strate           | _              | Graphical Representation                                                                |               | Samp                                     |             | tu teeting Lab. Te |         |           |       | Cu        | Additional Tes     |             | and Notes      |           |        |
| Depth    | Casing   | Water      | ā     | Description of Strat                                                                                   | •                                                                                                                                                                 | Leg.     | Reduced<br>Level | Depth          |                                                                                         |               | Depthe                                   | No.         | Blows              | 48      | × ×       |       | % Mg/n    |                    | 1h          | d <sub>h</sub> | 'v        | ďv     |
| _        | -        |            | -     |                                                                                                        |                                                                                                                                                                   | 5=1      | -                | -              | homoro                                                                                  | пинини        | 10.00                                    | d           |                    |         |           | П     |           |                    | F           |                |           |        |
|          |          |            | 1     | (While Limestone - Arillay an above)                                                                   |                                                                                                                                                                   | 王        |                  |                |                                                                                         |               |                                          | 1           |                    |         |           |       |           |                    | 1           |                |           |        |
|          | Rettie   | 1 Geol     |       |                                                                                                        | Ė                                                                                                                                                                 | $\pm$    | Ð                | fich flor      |                                                                                         |               |                                          |             |                    | 93      | 1         |       | Carlo     | ii al G            | 3,65        | 74             | 3.49      | 61     |
| 2        | Dilling  | 10001      | -     |                                                                                                        |                                                                                                                                                                   | 7        | •                | garrare.       |                                                                                         |               |                                          |             | 1                  | 17      |           | 1110  | Genio!    |                    | 100         |                |           |        |
| 1        |          | į          |       |                                                                                                        |                                                                                                                                                                   | 王        |                  |                |                                                                                         |               |                                          |             |                    | -       |           |       |           |                    | A           | Mem            |           |        |
| 3        |          |            |       |                                                                                                        | E                                                                                                                                                                 | 1        |                  |                |                                                                                         |               | 12.00                                    |             |                    |         |           |       |           |                    | "           | nin            |           |        |
| 7        | 1        | X II       |       | Below 12,00m limestone becoming a<br>and slightly stillcrous,                                          | horison.                                                                                                                                                          | 景        | 90.93<br>90.83   | 12.45<br>12.55 |                                                                                         |               | 12.00                                    |             |                    |         |           |       |           |                    | 2 80        | 74             | 3.57      | 71     |
| - 3      |          |            | 5     | At 12,45m leached fossil shell horis                                                                   |                                                                                                                                                                   |          |                  |                |                                                                                         |               |                                          |             |                    |         |           |       |           |                    | /4          |                | 0.01      | **     |
| į.       |          |            | 1     | Week grey sembered strange brown silty reignresses<br>RANGETINE . (Westbered White Limestone - Ardley) |                                                                                                                                                                   | ***      | 90.53            | 12.85          |                                                                                         |               |                                          |             |                    | 8       | 9 20      | 17    | 39        |                    | 1278        | 3              |           |        |
| •        | -        |            | 1     | Dense dark grey laintly weathered by<br>Due sandy SLLT becoming more clay                              | own slightly clayer                                                                                                                                               |          | 48% 05           | T .            |                                                                                         |               |                                          |             |                    | 04      |           |       |           |                    |             |                |           |        |
|          |          |            |       | (White Limestone - Shipton)                                                                            |                                                                                                                                                                   | T.       |                  |                |                                                                                         |               |                                          |             |                    | 36      |           |       |           |                    |             |                |           |        |
| 1        |          |            |       | Mixierately weak to moderately strong<br>thinly and medium helded line to medi                         | ium grained                                                                                                                                                       | 125      |                  | L              |                                                                                         |               |                                          |             |                    |         |           |       |           |                    | L           |                |           |        |
|          | •        |            |       | biotochated micritic pelletoidal LIMES<br>(White Limestone - Shipt                                     |                                                                                                                                                                   | -        |                  |                |                                                                                         |               |                                          |             |                    |         |           |       |           |                    | •           |                |           |        |
|          |          |            |       | From 13,05 in 13,15m, 13,65 in 13.<br>16,55m very still dark gray very still                           | #0m and 16.20 to                                                                                                                                                  | 盟.       |                  |                |                                                                                         |               |                                          |             | -                  |         |           | 111   |           | C                  | 100 ato     | 2              |           |        |
| 5.79     |          |            |       | From 16,30 in 17,30m limestone was                                                                     | , 30 in 17,30m limentone weak dark gray vary i with none vertical calcits valuing, 7,30m limentone moderately weak dark gray with an increasing number of diffuse |          |                  | t              |                                                                                         |               | 14.90                                    | M           |                    | 1       |           |       |           |                    | - 7         | Jal            | 3         |        |
|          |          | 1 1        |       |                                                                                                        |                                                                                                                                                                   | 7        |                  |                |                                                                                         |               |                                          | 1           |                    |         |           |       |           |                    |             | 46             | •         |        |
|          |          | 1          |       | very miridy with an increasing number                                                                  |                                                                                                                                                                   |          |                  |                |                                                                                         |               |                                          | 1           | 1                  | 73      |           |       |           |                    | 1,73        | 74             | 2.63      | 76     |
| -        | _        |            |       | ,                                                                                                      |                                                                                                                                                                   | $\pm$    | -                | •              |                                                                                         |               | 16.00                                    |             |                    | 13      |           |       |           |                    | F           | 95.5           | 2.0.      | 1.5    |
|          |          |            |       |                                                                                                        | 3-2                                                                                                                                                               | <u> </u> | Ξ                |                |                                                                                         |               |                                          |             | 1 1                | 25      | 00 1R     | 14    | 63        |                    | 1           |                |           |        |
|          |          |            |       |                                                                                                        |                                                                                                                                                                   | 구        |                  |                |                                                                                         |               |                                          |             |                    | 25      |           |       |           |                    | l.          | 00             |           |        |
|          |          |            |       |                                                                                                        |                                                                                                                                                                   | =        |                  | +              |                                                                                         |               | 17.30                                    |             | 1 1                |         |           |       | 1         |                    | f .         |                |           |        |
|          | Dellie   | i Geoli    |       |                                                                                                        | 1                                                                                                                                                                 | 丑        | - 0.             | lisk flar      |                                                                                         |               | 17,30                                    | n           |                    |         | 1         |       | for large | 0 -1 0             | 17.         | 85             |           |        |
|          |          | i Osuii    |       |                                                                                                        |                                                                                                                                                                   | 士        | 85.53            | 17.85          |                                                                                         |               |                                          |             |                    |         | 12        | III.0 | DEPIN!    | -                  | 1.01        | 73             | 0.12      | 76     |
| -        |          |            |       | Weak grevials green silty MILISTONE and very greens green and dark grey ality CLAY with                | AY with whole                                                                                                                                                     |          |                  | Ī              |                                                                                         | a a           |                                          | 1           | 10                 | 00 17   | 17        | 43    |           | T                  | +1          |                | 1941 1648 |        |
|          |          |            | П     | and fragmented systems. (Hampen M<br>From 18,35 to 18,75m clay hard gree                               | rd greenish grey motiled                                                                                                                                          |          |                  |                |                                                                                         |               | a a                                      |             | 1 1                | 00      | 0.00      |       | 35        |                    | NUL         | they           |           |        |
|          |          |            |       | black and jointed,                                                                                     |                                                                                                                                                                   |          |                  |                |                                                                                         |               |                                          |             |                    | 78      |           |       |           |                    | 1           | m              |           | Ē.     |
| -        | •        |            | П     | Helow 18.75 riav alightly to very sand<br>carbonized word fragments.                                   | ly with occasional                                                                                                                                                |          |                  |                |                                                                                         |               |                                          |             |                    | 1.      | 1 15      | 16    | 33        | 1                  |             |                |           | 0,     |
|          |          |            | 1     | M olerately weak to mulerately strong                                                                  | Umestone ergen                                                                                                                                                    | T        | 83,88            | 19.50          |                                                                                         |               |                                          |             |                    |         |           |       | 1         |                    | 2,05        | 74             |           |        |
|          | 2 05     | 18.00      |       | m edium brokied very fine grained rate<br>(Hampen Mariy )                                              | PERCHA SANCHTONE,                                                                                                                                                 | END      | 83.38            | 20.00          |                                                                                         |               | 20,00                                    |             |                    |         |           |       | 1.        |                    | Point       | 10000          | dex <0    | .10 MN |
|          |          |            |       | PURZOMETER 100 Upper sent                                                                              | SAMPLE D Sme                                                                                                                                                      | ell diel | urbed same       | io a Re        | lary core                                                                               | Blows N -     | N value                                  | 1-1         | V Vane             | atreng  | th hM/m   | ,     | Τ.,       | inland:            |             |                |           | r r    |
| y.       | Subsequi | tor strike | otrii | PIEZOMETER Upper sont                                                                                  | M AND M But                                                                                                                                                       | k dist   | rbed samp        | le Tro         | covery to scale                                                                         | 20/1<br>drive | BO, blowe !<br>after cont<br>blows for ; | Ing         |                    | Remov   | 14        |       | 1         | riplady i<br>ector | BSC. C.Eng  | -FIGE,FI       | HE >      | 2 6    |
|          |          |            |       |                                                                                                        | KEY U Und                                                                                                                                                         |          | ed sample        | C Ce           | onderd penetration to<br>the penetration to<br>transability to at<br>site donaity to at | et whel       | e of seating                             | e drive ent | y ROD N            | ock que | illy deel | -     | 0.000     |                    | ed Construc |                |           | -      |



# BGS ID: 336950 : BGS Reference: SP52SW64 British National Grid (27700) : 454910,224620

Report an issue with this borehole

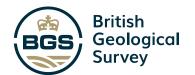
<<


< Prev

Page 1 of 2 🕶

Next >

>>


| LOGGE              | D BY:                 | ,                 | JHR<br>Explo | ration Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EXCAVATION ME                                                                                                       | THOOS                                          | Rotary           | Coring        | - OXFORD TO BANBURY S<br>- Dando 220 rig.<br>G. L. to 20.0 m.              | ECTION                                                                                     | COORD                    | D LEVEL       | 54914                        |                                  | m O.D.<br>224608 N                                      | SHEET 1 OF 2                   |                 |
|--------------------|-----------------------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|---------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|---------------|------------------------------|----------------------------------|---------------------------------------------------------|--------------------------------|-----------------|
|                    | -                     | 8Y:               | Explo        | oration Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                |                  |               |                                                                            |                                                                                            | DATES                    |               | .79 to                       | 30.5.7                           | 9                                                       | FIGURE A                       |                 |
| ole/Time<br>Olepih | Depth<br>of<br>Casing | Dep<br>to<br>Wate | 3            | Description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strate                                                                                                              | Leg.                                           | Reduced<br>Level | -             | Graphical Representation                                                   | Samp<br>Depths                                                                             | No.                      | ×             | 425                          |                                  | Testing  LL Y Cu  % Mg/m <sup>3</sup> kN/m <sup>2</sup> | Additional Tests and N         | d <sub>v</sub>  |
|                    |                       |                   | H            | 70900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                     | 3973                                           | 103,38           |               |                                                                            | 0,00                                                                                       | ш ,                      | (20)          | ~                            |                                  | <del></del>                                             | -                              | -               |
| 12                 | Brills                |                   |              | Firm to still eronge frown become initially snowly silly CLAY with an ed-line linearism gravel with depth (Collevium/Forest Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in-reading quantity                                                                                                 | <b>美</b>                                       | 103.18           | işh Get       |                                                                            | 0.15<br>0.50<br>0.95                                                                       | D 2<br>U 3<br>D 4<br>U 5 | (45)<br>(100) | 78<br>58                     | 21 23<br>23 21<br>23 21<br>22 22 | 40 2.01 90<br>53 2.10 105                               | Jey<br>Jey                     |                 |
| 5                  | -                     |                   |              | Mederately alread grey and blue be<br>bedded medium to scarze grained i<br>IAMPSTONE with small diffuse pa<br>greenish grey micritic with very U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rery shelly<br>tches of light<br>tin intertwelded                                                                   |                                                | 101.78           |               |                                                                            | 2.00                                                                                       | 7                        | 90*/38        | 5                            |                                  |                                                         | 2.63 75                        |                 |
| 5,79               | -                     |                   | R            | and laminae of allff irrors weather<br>clay. (Forest Markle)<br>Very weak light brownish grey flar<br>calcarrons MUISTONE faintly we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | asured and jointed                                                                                                  |                                                | 100.63           | 2.75          |                                                                            |                                                                                            |                          | 95            |                              | 6 16                             | 34                                                      | - Mobble for                   |                 |
|                    |                       |                   | WIIIIIIII    | on jetote, (Forest Maride)  Very stiff becoming hand gere eak versage and regage brown thinly to interfacilities of certifies (12 cold).  Forest 3,20 in 3,50 m with occasions of seads and moderately weak grey living 3,50m clay dark grey/brises come included ever weak malectic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | very thinly<br>layer M.C.T.<br>il very thin Interbeds<br>shelly limestone.                                          |                                                |                  | -3.95<br>4.60 |                                                                            | 3.50<br>4.00<br>5.40                                                                       |                          | 8:<br>30      | 98 1                         |                                  | 40<br>62                                                | -4-60<br>Bldm<br>Mbr           |                 |
| . 00               | 3,00                  | NIL               |              | At 3.86m erasion surface. Weak to very weak light greenish g MIRESTONE initially with some pat green clay and carbonized word ir. (White Lincolnes - I lielow 4.16m mudatone with inclu fragments of underlying timestone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rhes and wisps of<br>agments.<br>Hadon)                                                                             | HHHH                                           | ac 20            | 7.00          |                                                                            | 7.00                                                                                       |                          | 96            |                              |                                  |                                                         | 7.00                           | 3 68            |
| .00                | a.oo<br>Briisi        | 1.2               |              | Mosfessielv wesk light gray mettled<br>grained micritic LinkyRTTOR with<br>anadequoing fractures. (White L<br>Indias C. Sam Humestone becoming<br>From 5.15 to 6.30m erosion hort<br>inclined at 45".<br>Below 6.30m Humestone moderated<br>white thickly broked the grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orange stained<br>imestone - Bladon)<br>pelletedal,<br>eme - surface<br>y sirong light gray/<br>pelleteddal molitic |                                                | - Dis            | ish Ged       |                                                                            | 8.00                                                                                       |                          | 7             |                              | Bitisi                           | Geologidal Su                                           | Arms<br>- Arms<br>1.52 74 0.65 | 5491 21         |
| .5.79 <u>.</u>     |                       |                   |              | with well developed vertical style in decadely weak rapidly becoming meticately strong light grey medium estimately strong light grey medium estimated vertical states of the state of the | moderately weak to<br>m bedded (Inc to<br>and pelletoida)<br>bin beds of brown<br>atone - Ardley)                   |                                                | _                |               |                                                                            | 10.00                                                                                      |                          | 95            |                              |                                  |                                                         | 0,18 74                        | ф.<br>п\ими.о   |
|                    | First wa<br>Subsequ   | int <b>wa</b>     | or atrii     | PIEZOMETER Upper seel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | engik AND B                                                                                                         | Bulk diel<br>Weier som<br>Undielerb<br>In I Mi | ed sample        | V Inc         | its vane test drive indeed penetration test 26°, no penetration test whole | rysing<br>10, blows for<br>after noting<br>blows for pa-<br>of sobling a<br>Indisturbed of | t or<br>trive enty       | ROD Rect      | elural<br>emould<br>revery % | elmetter                         | Director                                                | ISC. C.Eng.FICE,FIHE           | SHEET<br>J OF 2 |



## BGS ID: 336915 : BGS Reference: SP52SW29 British National Grid (27700) : 454760,221960

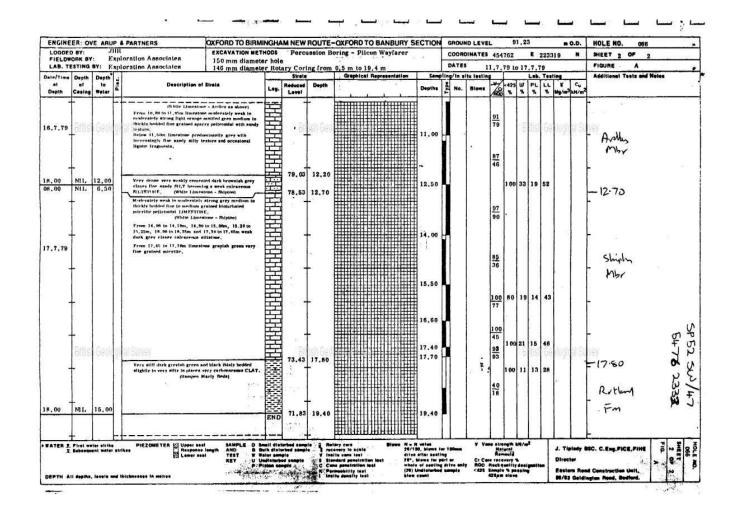
Report an issue with this borehole

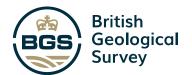
| 00060 | BY:         | JIIR     | A PARTNERS                                                             | EXCAVATION MET                                       |       |                  |          | OXFORD TO BANBURY S<br>Boring - Pilcon Wayfarer | _      | _           | DINATES 45  | 86,41        | 221969          | 0.D.          | HOLE NO.         | 062               |                    |
|-------|-------------|----------|------------------------------------------------------------------------|------------------------------------------------------|-------|------------------|----------|-------------------------------------------------|--------|-------------|-------------|--------------|-----------------|---------------|------------------|-------------------|--------------------|
|       |             |          | oration Associates<br>oration Associates                               | 150 mm diamete                                       |       | •                |          |                                                 |        | DATE        |             |              |                 | _ N           | SHEET 3 OF       | -                 |                    |
|       |             | Depth :  |                                                                        | 1 146 880 100 mm                                     | diam  | Strate           | ary Cor  | Graphical Representation                        | Samp   | Jan Tolkins | itu testing | 79 to 11.7.1 | 9<br>b. Testing | -             | Additional Test  | A<br>In and Malan |                    |
| pth C | of<br>esing | Water a  | Description                                                            | of Strata                                            | Leg.  | Reduced<br>Level | Depth    | (1)                                             | Depths | No.         | 147         |              | LL Y            | Gu N/m²       | 1. d.            | I, d,             |                    |
| †     |             | F        | (White Limestone - 6                                                   | hiptim sa aliove)                                    | 2     | ,                |          |                                                 |        |             | eser        |              | S CSOL DIS ST   |               | Shiphen          | Mer               |                    |
|       | Brill       | h Geolog | ical Suivey                                                            |                                                      | 宝     | . 4              | ritsh Ge |                                                 |        |             | . 76        |              | in Geolo        | <b>j</b> tali | 2,25 76          | 2,96 61           |                    |
| .79   |             |          | Helm 21,35m Himestone mod<br>sity,                                     | ernicly weak muckly very                             | 王     |                  | -        |                                                 | 21,00  |             |             |              |                 |               | 2.01 76          | 4,70 61           |                    |
| ľ     | 1           |          | Hard becoming very still dark<br>sondy CLAY with squares shell         |                                                      |       | 64.91            | 21,50    |                                                 |        |             | 97          |              |                 |               | 21.50            |                   |                    |
| †     |             |          | From 21,95 to 22,60m clay t<br>From 22,00 to 22,60m clay h             | olack highly carbonaceous.<br>ord dark greyish green | 吸去    |                  | 1        |                                                 |        |             | 93          |              |                 |               | ·                |                   |                    |
|       |             |          | mottled light grey silty to very<br>interfects of dark brown very o    | rarhomereous allt.                                   | *     | 63,51            | 99.00    |                                                 | 22.50  |             |             |              |                 |               | Rutim            | 110               |                    |
| †     |             |          | Hard mid grey motifed green c<br>(Hamps<br>Weak becoming mulcrately we | n Marie Breis)                                       | 2.8.3 | 63,31            | 23,10    |                                                 |        |             | 97          |              |                 |               | •                | •                 |                    |
|       |             |          | stilly fine grained calcareous S                                       | ANUSTINE.<br>on Mariy Roda)                          |       | 62,66            | 23.75    |                                                 | 8      |             | 53          |              |                 |               |                  | 1.7               |                    |
| †     |             | 100      | clayey silty very fine sand.<br>Very stiff dark grey/black still       | y to very silty CLAY,                                |       | 62,41-           | - 24.00  |                                                 | 24.00  | 1           |             |              |                 |               | <b>-</b> •       | •                 |                    |
| 00 1  | 2.00        | 0.00     | Initially a weak to moderately very valearous MUISTINE b               | wen Marly Reds)                                      | H     | 1                | 8        |                                                 |        |             | 96<br>50    | 111          | 11              |               |                  |                   |                    |
|       |             |          | moderately west mid grey atl                                           |                                                      | END   | 61.41-           | -25,00   |                                                 | 25.00  |             |             |              |                 |               | -                |                   |                    |
|       |             |          |                                                                        |                                                      |       | • 7              |          |                                                 |        |             |             |              |                 |               |                  |                   |                    |
| 1     |             |          |                                                                        |                                                      |       | 1                |          |                                                 |        |             |             |              |                 |               | ľ                |                   |                    |
|       |             |          |                                                                        |                                                      | 5     | !                | 24 3     |                                                 |        |             |             |              |                 |               |                  |                   |                    |
| T     | Brille      | h Gerlio |                                                                        | 1 .                                                  |       |                  | nigh Ge  |                                                 |        |             |             |              | Sh Qeolo        |               |                  |                   | ()                 |
| 1     |             |          |                                                                        | . 1                                                  |       | -1               | 4.       |                                                 |        |             | 1           |              |                 |               |                  |                   | 9C+                |
|       |             |          |                                                                        |                                                      | .,    | l i T            |          |                                                 |        |             | į.          |              |                 |               |                  |                   | 61                 |
| 1     |             |          |                                                                        |                                                      |       |                  | 5        |                                                 |        |             |             |              |                 | - 6           |                  |                   | 19                 |
| ſ     |             |          |                                                                        |                                                      | 4.    | day              | Fast.    |                                                 |        |             |             |              | 2 2             |               | <del>-</del>     |                   | d                  |
|       |             |          |                                                                        | - 科學                                                 | 4     | WIT.             | 1,7      |                                                 |        |             | 1-4         |              |                 |               | (* Point Lond in | rlex < 0.10 M     | N/m <sup>2</sup> ) |



BGS ID: 336933 : BGS Reference: SP52SW47 British National Grid (27700) : 454770,223320

Report an issue with this borehole


<<


< Prev

Page 2 of 2 V

Next >



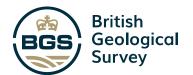




# BGS ID: 336933 : BGS Reference: SP52SW47 British National Grid (27700) : 454770,223320

Report an issue with this borehole

<<

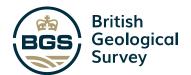

< Prev

Page 1 of 2 🗸

Next >



| LOGGE       |              | JIIR                      |                                                                  | EXCAVATION MET                                        | HOOS     | Perc       | ussion [          | oring - Pilcon Wayfarer                                      |                      | COORE      | INATES     | 4547     | 62                    |          | 223319  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET 1     | OF.                | 2      | _ |
|-------------|--------------|---------------------------|------------------------------------------------------------------|-------------------------------------------------------|----------|------------|-------------------|--------------------------------------------------------------|----------------------|------------|------------|----------|-----------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------|---|
| FIELDW      |              |                           | oration Associates<br>oration Associates                         | 150 mm diamete                                        |          |            |                   |                                                              | ı                    | DATES      |            | 11       | 7.79 t                | - 17     | 7 70    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIGURE      | A                  |        | _ |
| te/Time     | Depth        | Depth .                   |                                                                  | 1 146 mm diamete                                      | Rot      | Strate     | ng from           | 0.5 m to 19.4 m<br>Graphical Representation                  | Samo                 | ling/in al | to testing |          | 1.10                  |          | Testing |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Additional  | Tools sed          | Motos  |   |
| et<br>Depth | of<br>Casing | to Water                  | Description                                                      | of Strota                                             | Leg.     | Reduced    | Depth             |                                                              | Depths               | No.        |            | 47       | 425 W                 |          | LL Y    | C <sub>u</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                    | ****** |   |
| -           | - /          | 7                         |                                                                  |                                                       | 2727     | 91.23      | 8:28              |                                                              | 0.00                 | U- 1       | (50)       | -        | _                     | $\vdash$ | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           |                    | 101    | _ |
|             |              | l D                       | Stiff to very stiff grevish bear                                 | en hermaine eraeniah busan                            | 100      | 91.03      | 0.20              |                                                              |                      | Н          | 200        |          | 1                     | 1        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Core die    | meter 11           | 4      |   |
|             |              | H                         | motiled orange (initially Irial<br>frome platy grave) size frage | ie and samist CLAV with                               | ×        |            |                   |                                                              | 0.50                 | D 2        |            | 100      | 30                    | 1 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OUT UII     | 1110101 11         | T mm.  |   |
| ,7,79       | Dilliel      | Control                   |                                                                  | (Collections)                                         |          | 90.43      | 0.80              |                                                              | 0.63                 | 1 3        | (40)       | 77       | 00 20                 | 31       | 52      | i el On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                    |        |   |
|             | 211110       | nenin i                   | builted ("IAY with very thin I                                   | sterbeds of white estaments                           |          |            | <b>*</b> 011/2/20 |                                                              | 1.15                 | 4 .        | 1,000      | 100      | 00 20                 |          | 51      | IN ILLUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1         |                    |        |   |
|             | 1            | - 11                      | siffatour and fine and medium                                    | grained shelly politic                                | -        |            |                   |                                                              |                      |            |            | 61       |                       |          | -       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                    |        |   |
| .00         | MI.          | DRY                       | Intersteer, (Fere                                                | 4l Marbie)                                            |          |            |                   |                                                              | 1.70                 |            |            | *"       | 00 23                 | 22       | 80      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l .         |                    |        |   |
| .00 -       | - NIL        | DRY                       | 1                                                                |                                                       |          |            |                   |                                                              | 1.95                 | H 5        | (50)       | 100      |                       | Н        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L           |                    |        |   |
|             |              |                           |                                                                  |                                                       | -        |            |                   |                                                              | *. 90                | Ш          |            | 0 1      | 00 29                 | 24       | 50 2.   | 07 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100         |                    |        |   |
| .79         |              |                           |                                                                  |                                                       |          |            |                   |                                                              | 2,50                 | 0 6        |            | 1        | 00 26 23              | 19       | 51      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F           | weep.              |        |   |
|             |              |                           |                                                                  |                                                       |          |            |                   |                                                              |                      | D 7        | (80)       |          | 78 24                 |          | 12.     | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M           | overst<br>while F. | 200    |   |
|             | •            |                           |                                                                  |                                                       | -        |            | -                 |                                                              | 2,90                 | 5 9        | N=48       | 0        |                       | 24       |         | 02 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + "         | -44 W. I           | ~      |   |
|             | 8            |                           | 3                                                                |                                                       | ===      |            |                   |                                                              | 3.20                 | U 10       | (100)      | 1 7 1    |                       | 1 1      | 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                    |        |   |
|             |              |                           | 3                                                                |                                                       |          |            |                   |                                                              | 3,65                 | 더11        | (100)      | 1        | 00 21                 | 17       | 47 .    | 70 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |                    |        |   |
|             |              |                           | a                                                                |                                                       |          | _          | L                 |                                                              | 4.09                 | Η'-        | 1.00,      | ľ        | 00 21<br>00 23<br>24  | 40       | 2:      | 79 175<br>03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L           |                    |        |   |
|             |              |                           | 3                                                                |                                                       | ==       | 1 5        | F 16              |                                                              | 4,10                 | D-13       |            | 1        | 00125                 | 118      | 53      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г           |                    |        |   |
|             | 1 8          |                           | Heter 4,15m clay becoming very silty.                            | very still dark gray stity to                         | 1        | 1          |                   |                                                              |                      |            | 1          | 31       | 00 17                 | 14       | 43      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |        |   |
|             |              |                           | AT 1,70m informed and bored                                      |                                                       | 72.7     | 86,53      | 4.70              |                                                              | 4.60                 | na i       | !          | 1 "      |                       | 1 1      |         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -47         | 0                  |        |   |
| 13          | -            | 1 17                      | Medicrately strong light gree                                    | nish eray (ine preimed silled                         |          | 86.28_     | 4.95              |                                                              |                      |            |            | 1'00     |                       | 1 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                    |        |   |
| .00         | NIL          | DRY                       | burrows filled with dark gre                                     | r calcarenge send.                                    |          |            |                   |                                                              | 255-027              |            |            | 40       | 200                   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                    |        |   |
| . 00        | NIL          | 1,80                      | White Limestone -                                                | History                                               |          | 85.78      | 5.45              |                                                              | 5,50                 |            |            | 1        | 84 18                 | 19       | 41      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                    |        |   |
|             | 200          |                           | Weak light grevish green joint base with some shell debris.      | MUNISTONE silty towards                               |          | 85.33      | 5.90              |                                                              |                      |            |            | 9.8      |                       | 1 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Q 10 17            | 201    |   |
|             |              |                           | Very still dark greyish green                                    |                                                       | 中        |            |                   |                                                              |                      |            | . 1        | 98       |                       | 1 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F 16        | Molon              | lbr    |   |
| 7.79        |              |                           | and carlomacemia CLAY with                                       | prioried line limestone                               | H        |            |                   |                                                              | 6.60                 | 10         |            | 77       |                       | 1        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Falled 1    | U 1 02             |        |   |
| .00         | NII.         | 6.80                      | Below 6.75m becoming a wea                                       | (White Limestone - Bladon)<br>k grey silty calcareous |          |            |                   |                                                              | 6.70                 | 1) 15      |            | 100 7    | 75 19                 | 10       | 41      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |        |   |
| .00         | NIL.         | 6.50                      | muriatone,                                                       |                                                       |          | 84.23-     | 7.00              |                                                              | 7,00                 | 8          | 25*        | 50       |                       | 10       | "       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -SPT no     | penetrat           | ion    |   |
|             |              |                           | Medicrately weak to moderately for                               | y strong very light grey                              | ==       |            |                   |                                                              |                      |            |            | 100 8    | 1 31                  | 36       | 58      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    | m      |   |
|             | Dalliet      | Control                   | elightly stilly micritic LIMEST                                  | (White Limestone - Bladon)                            |          | Dil        | eh Dan            |                                                              | 7.50                 | 1 17       | (150)      | 72 8     | 1 31<br>8 18<br>00 43 | 26       | 73 1    | 8 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lene.       |                    | Ť,     |   |
|             | 211110       | 08010                     | Initially a very weak dark here                                  |                                                       | -        |            | on nen            |                                                              | 7,80                 | 1111       |            | 48<br>16 | 00 43                 | 11011    | on his  | SAL AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    | i      |   |
|             |              | 1                         | MUSETCHIF becreating a very                                      | tiff very dark grayish blue                           |          | 1 7        | Г                 |                                                              | 8.00                 | n          | 7 .        | 10       |                       | İΙ       |         | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Г           |                    | Co.    |   |
| 7.79        |              |                           | closely lineared carbonacemia                                    | (White Limestone - Bladon) .                          |          | 82.68      | 8.55              |                                                              |                      |            |            | 7. (     | -1                    | 1        | - 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -0.0               |        |   |
|             |              |                           | Below 8,25m clay very dark<br>with included fragments of lim     | creyish green slightly stity                          | 1        |            |                   |                                                              |                      |            |            | 48       |                       | 1        |         | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8:55        |                    | 2333   |   |
|             | _            |                           | debria,                                                          |                                                       | 1        |            | L .               |                                                              |                      |            |            | 16       |                       |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                    | ကိ     | - |
|             |              |                           | initially very weak and triable<br>becoming weak to moderately   | completely wrathered orange                           |          |            |                   |                                                              |                      |            |            |          |                       |          | - 1     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01          |                    | S      |   |
|             |              |                           | weathered arange maderately                                      | fractured fine grained                                | H        |            | (6)               |                                                              | 9,50                 | H          |            |          |                       | Н        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Ay        |                    |        |   |
|             |              |                           | mieritic pelletoidal LIMESTO                                     | E. (White Limestone-Anthry                            |          | 12 7       | N 22              |                                                              |                      |            |            |          |                       | H        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M           | 61                 |        |   |
|             | -            |                           | <del>+</del>                                                     |                                                       | 1        | -          | -                 |                                                              |                      |            |            |          | 1                     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                    |        |   |
| TER T       | Firet we     | ter sirike<br>ent water s | PIEZOMETER UPPer                                                 | sel SAMPLE D Se                                       | all dist | urbed samp | te & Re           | inry core Blows N = H<br>every to scale 26/15                | value<br>5, blows to | v 190mm    | V Van      | e strong | M kM/s                |          | 1 .     | liniade i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BSC. C.Eng. | ice sive           | 7 - 7  | F |
| .ч.         |              |                           | Lower                                                            | seel TEST SAW We                                      | -        | pie        | V Im              | its vame test drive                                          | atter seatir         | ng         |            | Hatur    | old                   |          | 1       | o de la constitución de la const | v.E.Mg./    | - SELFINE          |        |   |
|             |              |                           |                                                                  | KRY A + U U                                           | ndistorb |            | 4 C C             | indard panetration loci 76°, to<br>no panetration test whele | of seating           | drive and  | Cr Cen     | ******   | illy doe              |          | 1 011   | ector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                    | > 3.   | 1 |




# BGS ID: 336915 : BGS Reference: SP52SW29 British National Grid (27700) : 454760,221960

Report an issue with this borehole

<< Prev Page 2 of 3 ▼ Next > >>

| LOGGE             |                |             |        | ATNERS                          |              | _             |           | RD TO            |        |              |             |        |                                           |        |         | SECTIO                     | ж   | GROUN | O LEVE    | L                                       | 86.4  | 1     |                                        |                   | 0.0.  | HOLE           | NO.        | 062       |        |     |
|-------------------|----------------|-------------|--------|---------------------------------|--------------|---------------|-----------|------------------|--------|--------------|-------------|--------|-------------------------------------------|--------|---------|----------------------------|-----|-------|-----------|-----------------------------------------|-------|-------|----------------------------------------|-------------------|-------|----------------|------------|-----------|--------|-----|
| FIELDW<br>LAB. TE | DRK BY         |             | plora  | tion Asso                       |              |               | 150       | mm di            | amete  | r hole       | 588         | -      |                                           |        | m Wayla | rer                        | -   |       | INATES    |                                         |       |       | 22190                                  | 39                | N     | SHEET          | •          | 3         | 15-51  |     |
| te/Time           |                | Depth       | . Jorn | tion Asso                       | ciates       | _             | 146       | and 10           | 0 mm   | dlame        | Strate      |        |                                           |        | 25.0 m  | - 1 -                      |     | DATES | tu teetin | .7.79                                   | to 11 |       | Tool                                   | -                 | 00011 | FIGUR          |            | A         |        |     |
| et                | of<br>Casing   | to<br>Water |        |                                 | Descri       | ption of      | Streta    |                  |        | Leg.         | Reduced     | Dopth  | 33                                        |        |         | Depti                      | -   | •     | Blows     |                                         | 625 W | PL    | LL                                     | *                 | C,    | ],             | d          | ete and P | d      |     |
| -                 |                |             |        |                                 | 76.7T. TI    | incetone .    |           |                  | ==     | -            | Cover       |        |                                           |        |         |                            | ų:  | -     |           | /R05                                    | * *   | *     | *                                      | Mg/m <sup>3</sup> | kN/m  | 'h             | h          | · ·       | ٧      |     |
|                   |                |             |        | rlow 10,50m                     |              |               |           | societation (    |        |              |             |        |                                           |        |         | ##                         |     |       |           |                                         | Ŧ.    |       |                                        |                   |       | [              |            |           |        |     |
|                   | History        | 6800        | l M    | elicialal Ass                   | wly textur   | ed with e     | craelonal | partines         |        | -            |             | an ben |                                           |        |         | 10.5                       | 0   | -     |           |                                         | 1 6   | [[5]  | 381                                    |                   |       | i By           |            |           |        |     |
| .7.79             |                |             | 1      | weak to mer                     | decately w   | -ak atity i   | Imentone  | •                |        | -            |             |        |                                           |        |         | ▦                          | - 1 |       |           |                                         |       |       |                                        |                   |       |                |            |           |        |     |
|                   |                | 1           | 11     |                                 |              |               |           |                  | 10     | H            | w           |        |                                           |        |         | Ш                          |     |       |           | 93                                      |       | 1     |                                        | 2                 |       | F .            |            |           |        |     |
|                   |                |             | 11     |                                 | *            |               |           |                  |        | H            | 28          | 1.5    | 111111                                    |        | ШШ      | HH.                        |     |       |           | 63                                      |       | 1     |                                        |                   |       | 1              |            |           |        |     |
|                   |                | 0,00        | Ш      |                                 |              |               |           |                  |        |              | 600         |        | $\parallel \parallel \parallel \parallel$ |        |         | ##T                        | s   |       |           |                                         |       |       |                                        |                   |       | 2.67           | 75         | 1,33      | 79     |     |
| 00                | NIL            | 1.00        | 9      |                                 |              |               |           |                  |        | 中            | 2,47        | 1 8    |                                           |        |         | 12.0                       | 0 = | 1     |           | 1 1                                     |       |       |                                        |                   |       |                |            |           |        |     |
| 1                 | - 1            | E           | 8      |                                 |              |               |           |                  | XI.    | 于            |             |        |                                           |        | HHIII   | Ш                          | 1   |       |           |                                         |       | 1     |                                        | - 8               |       | 1              |            |           |        |     |
|                   | - 1            | 1           | Ŋ.     |                                 |              |               |           |                  | 8      | 17           | _8 ⊕        |        |                                           |        |         | ₩                          | ı   | 1     |           | 99                                      |       |       |                                        |                   | 0 1   |                | 12         | enn       | 21     |     |
| 1                 |                | E           | Ħ      |                                 |              |               |           |                  |        | H            | -           | •      |                                           |        |         | ₩                          | ı   |       |           | 91                                      |       | 1     |                                        |                   |       | -              | 171-       | _         | Š      |     |
|                   |                | E           | Ħ      | 410004                          |              | 00479-7040-10 |           |                  | }      | $\Xi$        | 1           |        |                                           |        |         | Ⅲ                          |     |       |           |                                         |       | 1     |                                        |                   |       | 7.08           | 76         | 0,95      | 76     |     |
| 7.79              |                | E           | 9 !!   | riow 13,30m<br>creaningly a     | Himratone    | n becamin     | to very   | strly stro       | ***    |              |             | . 5    | $\blacksquare$                            |        |         | 13.5                       | ٩n  |       |           |                                         |       | 1     |                                        |                   |       | (277.75% SEC.) |            |           |        |     |
| -                 |                | E           | H      |                                 |              | COLORIDA      |           |                  |        | $\Box$       | 10.0        | . 9    |                                           |        | шш      | ##                         |     | 8 8   |           |                                         |       |       |                                        |                   | 1     | L              |            |           |        |     |
|                   |                | · E         | Ħ      |                                 |              |               |           |                  |        |              |             |        |                                           |        |         |                            |     |       |           | 92                                      |       |       |                                        |                   |       |                |            |           |        |     |
| - 1               | - 1            | 16          | Я      |                                 |              |               |           |                  |        | H            |             |        | шш                                        |        |         | Ш                          |     |       |           | 7,6                                     |       |       |                                        | li h              | 1     | int moreo      |            |           |        |     |
| , ,               | .              | 1           | n.     | ice 15,20m                      | leached fo   | ossti hari    |           |                  | 1      | 7            |             |        | шш                                        |        |         | 15,0                       |     |       |           |                                         |       |       |                                        | 1                 |       | 2,75           | 76         | 2,21      | 68     |     |
|                   |                |             |        | eak dork grey                   |              |               |           |                  |        | -            | 71,16       | 15,25  |                                           | ####   | ####    | 10.0                       | 1   | ]     |           |                                         |       |       |                                        |                   |       |                |            |           |        |     |
| - 1               | - 4            | 1           | - 84   | NUSTONE N                       | ecoming a    | nore claye    | y lean po | ndy with         | 12     |              | 70.81       | 15.60  |                                           | ш      | нш      | <b>#</b>                   |     |       |           |                                         | - 1   |       |                                        | . 1               |       | /\$            | C          |           |        |     |
|                   | . 1            | ŀ           |        | 10w 15,50m                      | (White Lin   | e grey ve     | Shipton)  | andy clay        | . [    | $\Box$       |             |        |                                           |        |         | ▦                          | 1   | 1 1   |           | 100                                     |       |       |                                        |                   |       | 1.14           | 76         | 1.83      | 71     |     |
| T                 | × 1            | 1           | M      | mieralely we                    | nk to mode   | rately at     | rong mid  | grey med         | -      | Ÿ            | 1           | 700    |                                           |        |         | ▦                          | 1   | 1 1   |           | 77                                      |       | 1 3   |                                        |                   |       | -              |            |           |        |     |
|                   | 2,00           |             | _ in   | thickly bedde<br>Icritic extens | el fine to s | medium g      | IMPRICA   | ilrioidal<br>N F |        | 田            |             |        |                                           | 11111  |         | 16.5                       | , 4 | 1 1   |           | 1                                       |       | 1     |                                        |                   |       | į.             |            | î         |        |     |
| ,00               | 2.00           | 1.00        | E      | ,                               | White Lim    | entone - E    | Rhiptom)  |                  |        |              |             | . 1    | <b>       </b>                            | нн     |         | #                          |     |       |           | ١.                                      |       |       |                                        |                   | - 1   | •              | Shy        | low       |        |     |
| 1                 | 8)<br>5000 000 | - 1         | 1 4    | 15,85m this<br>ightly clayey    | enicareou    | of very w     | esk grey  | enndy            |        | 一            | -           |        | шШ                                        |        |         | #                          |     |       |           |                                         |       |       | - 1                                    |                   |       |                | ME         | 6,48      | 71     |     |
|                   | Hiller         | OBUID       |        | 15,40 to                        | 18,85m s     | and 19.85     |           | Om hard o        | forb - | 4            | Till.       | Silved |                                           | HIIII  | THILLE  | Ħ                          |     |       | 7450      | 95<br>73                                | 10    | libii | 138                                    |                   | HOU   | 101            | ********** | 0,40      |        | o   |
| 1                 |                |             | Rr.    | ey clayey ca                    | dearrous (   | ellt,         |           |                  |        | $\dot{\Box}$ | 1           |        |                                           |        |         | ▦                          |     |       |           | 73                                      |       |       |                                        |                   |       |                |            |           |        | F   |
| 7.79              |                |             | 1      |                                 |              |               |           |                  |        | 5            |             | - 4    |                                           |        |         | 18.00                      |     |       |           |                                         | 1     |       | - 1                                    |                   | - 1   | -              |            |           |        | 8   |
|                   | - 1            |             | 1      |                                 |              |               |           |                  | . 1    |              | 1           | 1      |                                           | ШШ     |         | ##                         | 1   |       | 1         |                                         | 1     | 11    |                                        |                   | - 1   | 0.84           | 77         | 1.28      | 75     | V   |
| Ť                 | - 1            |             | 1      |                                 |              |               |           |                  |        | 1            | 1. 1        |        |                                           | ###    | #####   | Ш                          | 1   | 1     |           |                                         |       | 13    |                                        |                   | - 1   |                |            |           | 180    | F   |
| 1                 | 8 F            |             |        |                                 |              |               |           |                  |        | 4            |             |        | шШ                                        | 11111  | ШШ      | Ħ                          | e.  |       |           | 99<br>75                                |       | 9     |                                        | 2 7               | - [   | L              |            |           |        | 3   |
|                   | ~ 1            |             |        |                                 |              |               |           | 730              | 0      | T I          |             |        | ШШ                                        | 111111 | HIIII   | H                          | 1   |       |           | 10                                      |       |       |                                        | ,                 | -     | •              |            | ٠         | 65     | - ( |
|                   | 1              | - 1         | 1      |                                 |              |               |           | 44.5             | 41     | T            |             | ,      | шш                                        | 111111 |         | 19.5                       | 1   | 1     |           |                                         |       |       | 1                                      |                   |       |                |            |           |        |     |
|                   | . 1            |             | 1      |                                 |              |               |           |                  | 4 1    | 1,00         | 4: 1        |        |                                           | ШШ     |         | ##                         |     |       |           |                                         |       |       |                                        |                   |       | (* Point       | Load I     | ndex <    | 0.10 M | N/m |
| - +               | leat mai       | er strike   | F      | DIRTON                          |              |               |           |                  |        |              |             |        |                                           |        |         | Ξ                          | L   | ш     |           | ـــــــــــــــــــــــــــــــــــــــ |       | لبا   | ــــــــــــــــــــــــــــــــــــــ |                   |       | -              |            |           |        |     |
| Z.                | -              | ni water e  | rikes  | PIEZOMET                        |              | espense i     | oneth ·   | AND S            |        | b dista      | rted sample |        | ary core                                  | -14    | Blome H | - N value<br>1/1 50, blows |     |       | A A.      | Hater                                   | EN/   |       | 1                                      |                   |       | SC. C.E.       |            |           | 3 00   | Ŧ   |



# BGS ID: 336915 : BGS Reference: SP52SW29 British National Grid (27700) : 454760,221960

Report an issue with this borehole

<<

< Prev

Page 1 of 3 🕶

Next >



| NGINE                 | ER: OV |             | _    | PARTNERS                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                       |         |                  | -OXFORD TO BANBURY S     | ECTION | GROUP     | NO LEVE      | L          | 8         | 6.41   | -7.0-7.1 | ₩ O.D.             | HOLE NO. 062                                                            |
|-----------------------|--------|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|------------------|--------------------------|--------|-----------|--------------|------------|-----------|--------|----------|--------------------|-------------------------------------------------------------------------|
| LOGGED                |        | 311         |      |                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                       | Percus  | sion Bo          | ring - Pilcon Wnylarer   |        | COOR      | DINATES      | 454        | 1759      |        | 231      | 969 N              | SHEET 1 OF 3                                                            |
|                       |        |             | plos | ration Associates                                                                                                                                                                                                                                                                                         | 150 mm diamete                                                                                                 |                                       | ter Rot | ary Cori         | ing from 1.5 to 25.0 m   |        | DATE      | 5            | 4.7.       | 79 to     | 11,7   | .79      | 1                  | FIGURE A                                                                |
| te/Time               | Depth  | Depth       |      |                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                       | Streta  |                  | Graphical Representation | Same   | ling/in s | Itu teeting  |            |           |        | b. Tes   |                    | Additional Tests and Notes                                              |
| epth                  | Caeing | to<br>Water | ā    | Description of                                                                                                                                                                                                                                                                                            | Strata                                                                                                         | Leg.                                  | Reduced | Depth            |                          | Depthe | Ho.       | Blows        | 1          | <425<br>% | W PI   | LL       |                    | the de to de                                                            |
| +                     | •      |             | LLT  | TOPSOI,                                                                                                                                                                                                                                                                                                   |                                                                                                                | 2333                                  | 86,41   |                  |                          | 3      |           |              |            |           |        |          |                    | F                                                                       |
| 7.79                  |        | Ğedili      | é    | Firm becoming aliff yellowish by m<br>pracage ality CLAY initially with no<br>platy linications gravel and alreads<br>sitty fine colcareous RAND,<br>Collusium/Weath                                                                                                                                      | me line to coarse                                                                                              |                                       | 86,21   | 0.20<br>Sh Geg   |                          | 0.45   | S<br>D 1  | N=29<br>(80) |            | 100       |        | 45       | 10ga   Su<br>12.03 | -                                                                       |
| 1.00                  | NIL    | DRY         | Ш    |                                                                                                                                                                                                                                                                                                           | ,                                                                                                              |                                       |         |                  |                          | 1.20   | D 3       | 76 /150      |            | 79        | 7 14   | 59       | 1 1                | , ,                                                                     |
| 3.00                  | NIL    | DRY         |      | Mosterately weak to mosterately at-<br>highly fractured becoming thinly be                                                                                                                                                                                                                                | ikled medium grained                                                                                           |                                       | 84.91   | 1,50             |                          | 1.50   | 1         |              |            | 100       |        |          |                    | Core diameter 114 mm.                                                   |
| T                     |        |             |      | entitle shell deterts LIMERTONE. Still grey attraked brown and oran stilly CLAY with very thin interhed                                                                                                                                                                                                   | ge very thinly bedded                                                                                          | 喜                                     | 84,21   | 2.20             |                          | 2.50   | U 5       | (1 00)       | 20         | 100       | "      |          |                    | holdle Fm                                                               |
|                       |        |             | 111  | cinyey onlittle and and calcareous                                                                                                                                                                                                                                                                        |                                                                                                                | 7                                     | 83.51   | 2.90             |                          | 2.90   | 1 6       |              |            | 100       |        | 49       | 2.02               | 280                                                                     |
| .7.79                 |        |             |      | At 2,50m infurated and bornd eros At 2,50m infurated weak in moderately air relous banded medium bedded medi<br>and shell deferia LIMFRYCHF. (For<br>From 3,70m to 3,40m very dense<br>comented chary the anney calcase<br>Below 3,80m limestone light grey                                               | mg light and dark grey<br>uni grained colitic<br>errat Marbiej<br>fark grey weakly<br>ous allt.                |                                       |         |                  |                          | 4,20   |           |              | 7 <u>1</u> |           |        |          | 2.60               | SPT no penetration.                                                     |
|                       |        | -           | •    | At 4,50m irregular ecosion nuriace<br>initially havid dark grey slightly cla-<br>rate areas 31.7 with included tump<br>incoming materially weak greenial<br>metritis MUSTONE, (White Lim<br>Briow 5,50m multione becoming is<br>still dark grey financed cerbonarce<br>included gravel size impas of mice | yey fine sarely in of limentone i gray very broken retowe - Niadom) itertie-doed with very ins alliv clay with | X X X X X X X X X X X X X X X X X X X | 81.91   | 4,50             |                          | 5.70   | ) is      |              | 85<br>47   | 100       | 20 11  | 36       |                    | Failed U102<br>SPT no penetration.                                      |
|                       |        | Çevlü       |      | At 8.18m thin band of cost,  Very atiff becoming band gravish go lineared slightly atify moderately c places highly moisture absorbers,  (White Lim Below 7.10m view with individual ju broken slabs and vertical root insp                                                                               | estone - Bladon) mps of Ilmestone                                                                              |                                       | 79.71   | 6.70<br>Ish Geol |                          | 8:38   | S 7       | 70/225       | 97         | 1 00      | Britis | lillie   | Jogica Su          | . B) <u>v</u>                                                           |
| 1                     |        |             |      | Medicrately weak to moderately stre-<br>bodded very line grained alightly at                                                                                                                                                                                                                              | ing light grey medium<br>ity micratic LIMPSTONE,<br>catone - Risdon)                                           | H                                     | 78.61   | 8.50             |                          | 8.10   | 1         |              | 1 00<br>54 | 90        | 3 2    | 6 56     |                    | \$ 50<br>8 50                                                           |
| 3,00<br>8,00<br>.7.79 | NIL    | 1,00        |      |                                                                                                                                                                                                                                                                                                           | ng fine sandy leatured<br>leatons - Ardley)                                                                    |                                       |         | 1                |                          | 9.00   |           |              | 98<br>79   |           |        |          | (1)<br>(2)<br>(3)  | Core diameter reduced better<br>9,0m,<br>3.04 75 3.89 81 .<br>Adlay Mbr |



# **ALLIED EXPLORATION & GEOTECHNICS LTD**

# **DRILLHOLE LOG**

Status:-FINAL

1 of 3

Date:- 04/06/97 **DRILLHOLE No** Site Investigation at RAF Upper Heyford Client: BH-04 Oxfordshire E453354.10 N227054.10 **Defence Estate Organisation** Method & Equipment: Ground Level(m(AOD)): Date: Sheet:

121.88

29-04-97

Openhole using a UMM C10TW

| RUI     | N DET        |                   |                  |        |                                      | STRATA                         |                                                                                               | gg      | 1       |
|---------|--------------|-------------------|------------------|--------|--------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|---------|---------|
| Nomit . | TCR<br>(SCR) | (SPT)<br>Fracture | Red'cd           | Legend | Depth<br>Thick-                      | DESCR                          | IPTION                                                                                        | Geology | Instru- |
| epth    | RQD          | Index             | Level            | 1      | ness)                                | Discontinuities Detail         | Main                                                                                          | Sec     | L       |
|         |              |                   | 121.68           |        | 0.5050                               | 0.00-19.80m Openhole drilling. | Firm to stiff brown sandy CLAY.                                                               |         | 160     |
|         |              |                   | 121.28<br>121.18 |        | (0.40)<br>(0.40)<br>(0.40)<br>(0.36) |                                | Yellow brown highly weathered<br>LIMESTONE weak to very weak.<br>(Boulders)                   |         |         |
|         |              |                   | 120.82           |        | 0.36)                                |                                | Firm brown sandy CLAY.                                                                        |         | K       |
|         |              |                   | 120.02           |        | 1.00                                 |                                | Yellow brown highly weathered LIMESTONE weak to very weak.                                    |         | K       |
|         |              |                   |                  |        | 1.47)                                |                                | Yellow brown slightly to moderately weathered LIMESTONE moderately weak to moderately strong. |         |         |
|         |              |                   | 119.35           |        | 2.53<br>0.39)<br>2.92                |                                | Yellow brown moderately weathered LIMESTONE weak.                                             |         |         |
|         |              |                   |                  |        | 1.17)                                |                                | Yellow brown moderately to slightly weathered LIMESTONE moderately weak.                      |         |         |
|         |              |                   | 117.79           |        | 4.09<br>0.28)<br>4.37                |                                | Grey moderately weathered MUDSTONE weak.                                                      |         |         |
|         |              |                   | 116.33           | (      | 1.18)<br>5.55                        |                                | Grey moderately to slightly weathered MUDSTONE moderately weak.                               |         |         |
|         |              |                   | 115.45           |        | 0.88)                                |                                | Grey moderately weathered<br>MUDSTONE weak.                                                   |         |         |
|         |              |                   |                  |        | V.11V                                |                                | Grey moderately to slightly weathered MUDSTONE weak.                                          |         |         |

| Drilling Progress    | Depth         | Casing | Core Dia | Water  | mBGL) | F    | ush     | GENERAL                                                                                                                                                                |
|----------------------|---------------|--------|----------|--------|-------|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |               |        | mm       | Strike | RWL   | Type | Returns | REMARKS                                                                                                                                                                |
| 29/04/97<br>29/04/97 | 0.00<br>19.80 | 0.00   |          | 16.82  |       | air  | 100%    | 1) Inspection pit<br>excavated prior to drilling<br>(1.0 x 1.0 x 0.20m). 2)<br>Jar samples taken every<br>1.00m. 3) 50mm<br>diameter standpipe<br>installed to 19.80m. |

All dimensions in metres Scale 1:50

For Explanation of Symbols and Abbreviations see Key Sheets

Logged By: J. Fernley

Contract No. 1742

# **ALLIED EXPLORATION & GEOTECHNICS LTD**

# **DRILLHOLE LOG**

Status:-FINAL

Date:- 04/06/97

roject:

Site Investigation at RAF Upper Heyford
Location:

DRILLHOLE No

Client: Defence Estate Organisation

Oxfordshire E453354.10 N227054.10

BH-04

Method & Equipment:

Openhole using a UMM C10TW

Ground Level(m(AOD)): 121.88

Date: Sheet: 29-04-97

2 of 3

| RUN DE       |                        |                            |        |                                             | STRATA                 |                                                                                                                                                                                                                                                                       |                                                        | gy      |
|--------------|------------------------|----------------------------|--------|---------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|
| TCF<br>(SCF  | R (SPT)<br>R) Fracture | Red'cd                     | Legend | Depth<br>Thick-                             | DESC                   | RIPTION                                                                                                                                                                                                                                                               |                                                        | Geology |
| Depth ROI    |                        | Level                      |        | ness)                                       | Discontinuities Detail | Main                                                                                                                                                                                                                                                                  |                                                        | 360     |
|              |                        |                            |        | (4.53)                                      |                        | (As sheet 1 of 3) Grey moderately to si weathered MUDSTON between c.8.00-10.000 greenish grey.                                                                                                                                                                        | VE weak.                                               |         |
|              |                        | 110.92<br>110.55<br>110.31 |        | 10.96<br>(0.37)<br>11.33<br>(0.24)<br>11.57 |                        | Grey moderately to sli<br>weathered sandy MUI<br>moderately weak to w<br>Grey fine grained mod<br>slightly weathered SA<br>moderately weak to w<br>Grey moderately to sli<br>weathered sandy MUI<br>weak to moderately w                                              | DSTONE eak. derately to NDSTONE eak. ghtly DSTONE      |         |
|              |                        | 108.28                     |        | (0.58)<br>13.60<br>(0.48)<br>- 14.08        |                        | Grey fine grained moderately weathered SAI moderately weak.  Grey moderately to sli weathered sandy MUD weak to moderately weak. | ghtly DSTONE eak. derately to NDSTONE eak. derately to |         |
| Orilling Pro |                        | 105.95                     |        | 15.93                                       |                        | weak.                                                                                                                                                                                                                                                                 |                                                        |         |

| Drilling Progress    | and Water Ol  | bservation | S        |                 |              |         |                  | GENERAL                                                                                                                                              |
|----------------------|---------------|------------|----------|-----------------|--------------|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                 | Depth         | Casing     | Core Dia | Water<br>Strike | mBGL)<br>RWL | Type FI | ush<br>  Returns | REMARKS                                                                                                                                              |
| 29/04/97<br>29/04/97 | 0.00<br>19.80 | 0.00       |          | 16.82           |              | air     | 100%             | 1) Inspection pit excavated prior to drilling (1.0 x 1.0 x 0.20m). 2) Jar samples taken every 1.00m. 3) 50mm diameter standpipe installed to 19.80m. |

All dimensions in metres Scale 1:50

Date Printed:- 04/06/97

For Explanation of Symbols and Abbreviations see Key Sheets

Checked By: Logged By: J. Fernley

Contract No. 1742

# **ALLIED EXPLORATION & GEOTECHNICS LTD**

## **DRILLHOLE LOG**

Status:-FINAL

29-04-97

Date:- 04/06/97

3 of 3

DRILLHOLE No Site Investigation at RAF Upper Heyford Client: Location: BH-04 Defence Estate Organisation Oxfordshire E453354.10 N227054.10 Method & Equipment: Ground Level(m(AOD)): Date: Sheet: Openhole using a UMM C10TW

121.88

| RUN DETAILS  Depth To SCRIP Firefular ROD Index                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dark grey brown moderately weathered MUDSTONE weak.  Dark grey moderately weathered MUDSTONE weak.  Dark grey moderately weathered MUDSTONE weak.  Grey moderately weathered sandy MUDSTONE weak to moderately weak.  [1.74] |
| Dark grey brown moderately weathered MUDSTONE weak.  Dark grey moderately weathered MUDSTONE weak.  Dark grey moderately weathered MUDSTONE weak.  Grey moderately weathered sandy MUDSTONE weak to moderately weak.  [1.74] |
| Dark grey moderately weathered MUDSTONE weak.  103.82 18.06  Grey moderately weathered sandy MUDSTONE weak to moderately weak.  (1.74)  102.08 19.80                                                                         |
| (1.74)  MUDSTONE weak to moderately weak.                                                                                                                                                                                    |
| Drillhole complete at 19.80m BGL.                                                                                                                                                                                            |
|                                                                                                                                                                                                                              |

| Drilling Progress    | s and Water Oi | oservation | S        |                    |              |      |                  | GENERAL                                                                                                                                              |
|----------------------|----------------|------------|----------|--------------------|--------------|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                 | Depth          | Casing     | Core Dia | Water (r<br>Strike | nBGL)<br>RWL | Type | ush<br>  Returns | REMARKS                                                                                                                                              |
| 29/04/97<br>29/04/97 | 0.00<br>19.80  | 0.00       |          | 16.82              |              | air  | 100%             | 1) Inspection pit excavated prior to drilling (1.0 x 1.0 x 0.20m). 2) Jar samples taken every 1.00m. 3) 50mm diameter standpipe installed to 19.80m. |

All dimensions in metres Scale 1:50

For Explanation of Symbols and Abbreviations see Key Sheets

Logged By: J. Fernley

Contract No. 1742





BOREHOLE No Heyford Park, Oxfordshire Location **BH214** Job No **RT/11/52204** Co-ordinates () Ground Level (m) 125.71 E 452,961.0 N 227,253.0 10-05-11 Client Waterman Energy, Environment and Design Ltd Sheet 1 of 2

|                       |                                    |                                     |                                      | CORE REC                 | COV                      | ER                       | Υ &    | & T                          | EST                         | S     |                                       |                                      |                               | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|------------------------------------|-------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|--------|------------------------------|-----------------------------|-------|---------------------------------------|--------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Progress  | Casing<br>depth/size               | Water<br>level/<br>time/<br>date    | Flush<br>Return %                    | Depth (m)<br>AL/ from to | Total core<br>Recoverv % | Solid core<br>Recovery % | R.Q.D. | Fracture<br>Depth            | Fracture<br>Index           | Tests | Legend                                | Reduced                              | Depth<br>C (Thickness)<br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                    | uato                                |                                      |                          |                          |                          |        |                              |                             | _     |                                       | -<br>-<br>-<br>+125.4                | (0.30)                        | MADE GROUND dark brown very dayey medium sand (topsoil).  Firm brown slightly gravelly CLAY. Gravel is of angular fine to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                                    |                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                          |                          |                          |        |                              |                             |       |                                       | -<br>-<br>-<br>-<br>-<br>-           | (1.20)                        | limestone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                    |                                     |                                      | -<br>-<br>-              |                          |                          |        |                              |                             |       |                                       | -<br>_+124.2<br>-<br>-               | (0.50)                        | Yellow brown weathered LIMESTONE. (Rotary open hole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                    |                                     |                                      | 2.00-3.00                |                          | 29                       |        | 2.00                         | N                           |       |                                       | -<br>-<br>+123.7                     | 2.00                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                    |                                     |                                      | 3.00-6.00                | 70                       |                          | 7      | 2.47<br>2.63<br>2.70<br>3.00 | NI 25 NI 29 No Rec NI NI NI |       |                                       |                                      | (2.01)                        | Weak light brown/yellow brown partially crystalline calcaceous LIMESTONE. Frequent recrystallised shell material. Generally completely weathered with the exception of some isolated core stones. Stength reduced to extremely weak and recovered as light brown very clayey gravel where most intensely weathered.  2.30-2.70m - Fractures sub horizontal, extremely closely spaced undulating, rough and open with orange brown discolouration on fracture surface.  3.60-3.66m - Fractures extremely closely spaced sub horizontal, undulating, rough and tight with some orange brown discolouration on fracture surface. |
|                       |                                    |                                     |                                      | -<br>-<br>-              |                          |                          |        | 3.90                         | NI 7.7                      |       | ×××                                   | -<br>_ <u>+121.7</u><br>_            | 4.01                          | Weak thinly laminated, grey slightly calcaceous fine grained argillaceous SILTSTONE. Highly weathered throughout entire horizon. Retains original                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                    |                                     | -<br>-<br>-<br>-<br>-<br>-<br>-      | -<br>-<br>-<br>-<br>-    |                          |                          |        | 4.27                         | No Rec                      |       | × × × × × × × × × × × × × × × × × × × | +121.4<br>-<br>-<br>-<br>-<br>-<br>- | (0.26)<br>4 4.27              | veear trinly laminated, grey signify caracterous line grained arginicocous SILTSTONE. Highly weathered throughout entire horizon. Retains original structure but recovered as very stiff clay.  Fractures very closely spaced, sub horizontal, planar rough and tight with slight dark grey discolouration on fracture surface.  No recovery. Drill loss no evidence of voiding.                                                                                                                                                                                                                                              |
| Rota<br>Rota<br>Flusl | d excavary Operary Cori<br>hing me | n Hole<br>ng 2.0-<br>dium- <i>A</i> | 1.2-2<br>9.0m<br>.ir/M               | 2.0m                     | on co                    | omple                    | etio   | n                            |                             |       | Г                                     | <u></u>                              | nt.                           | Logged By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| II dime<br>S          | ensions cale 1.3                   | in meti                             | es                                   | Frede                    | lie A                    | Alco                     | ck     |                              |                             |       | Equ                                   | iipme                                | 111                           | Comacchio 450-P Edward Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





| Location Heyford P                                    | BOREHOLE No          |                            |                                            |              |  |
|-------------------------------------------------------|----------------------|----------------------------|--------------------------------------------|--------------|--|
| Job No<br><b>RT/11/52204</b>                          | Date <b>10-05-11</b> | Ground Level (m)<br>125.71 | Co-ordinates ()<br>E 452,961.0 N 227,253.0 | BH214        |  |
| Client<br>Waterman Energy, Environment and Design Ltd |                      |                            |                                            | Sheet 2 of 2 |  |

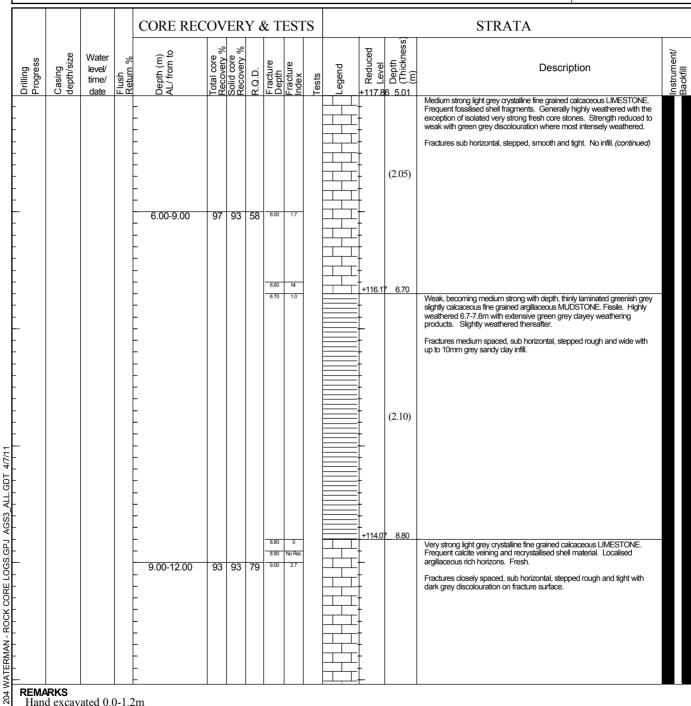
|                                                                                                                           | CORE RECOVERY & TESTS                                                                                           | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling Progress Casing depth/size depth/size Aunt app Refurn %                                                          | Depth (m) AL/ from to Total core Recovery % Solid core Recovery % R.Q.D. Fracture Practure Practure Index Tests | Description  Legend  Thickness  T |
| -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                            | (1.73) No recovery. Drill loss no evidence of voiding. (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <br>-<br>-<br>-<br>-                                                                                                      | 6.00-7.50 75 58 30 6.00 13.3 6.15 N 6.26 7.4                                                                    | Strong light grey crystalline fine to medium grained calcaceous LIMESTONE. Generally fresh with slight greenish grey penetrative discolouration.  (0.68) 6.00-6.15m - Fractures sub horizontal, stepped, rough and open with slight orange brown and greenish grey discolouration on fracture surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                           |                                                                                                                 | +119.08 6.68 slight orange brown and greenish grey discolouration on fracture surface.  Very weak becoming medium strong at 8.13m thinly laminated greenish grey slightly calcaceous fine grained angiliaceous MUDSTONE. Completely weathered becoming slightly weathered at 8.13m. Strength reduced to very weak with extensive blue grey clay weathering products where most intensely weathered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | 7.50-9.00 97 94 78 7.50 29                                                                                      | Fractures medium spaced, sub horizontal, stepped rough and tight with slight orange brown discolouration on fracture surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -<br>-<br>-<br>-<br>-<br>-                                                                                                | - 8.08 N 8.13 4.1                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 00:00<br>10.05.11 1.5m 8.2m                                                                                             |                                                                                                                 | +117.09 8.62  Strong dark grey slightly argillaceous medium to fine grained calcaceous LIMESTONE. Frequent fossilised shell fragments and colites. Fresh. Unfractured insitu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| REMARKS Hand excavated 0.0-1.2                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REMARKS Hand excavated 0.0-1.2 Rotary Open Hole 1.2-2 Rotary Coring 2.0-9.0m Flushing medium-Air/M Standing water was obs | 2.0m                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All dimensions in metres<br>Scale 1:32.3                                                                                  | Client<br>Freddie Alcock                                                                                        | Equipment Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| All dimensions in metres | Client         | Equipment       | Logged By    |
|--------------------------|----------------|-----------------|--------------|
| Scale 1:32.3             | Freddie Alcock | Comacchio 450-P | Edward Lodge |
| 0  20000                 |                |                 |              |





| Location Heyford F                                    | Park, Oxfordshire    |                            |                                            | BOREHOLE No  |
|-------------------------------------------------------|----------------------|----------------------------|--------------------------------------------|--------------|
| Job No<br>RT/11/52204                                 | Date <b>09-05-11</b> | Ground Level (m)<br>122.87 | Co-ordinates ()<br>E 453,318.9 N 227,202.0 | BH215        |
| Client<br>Waterman Energy, Environment and Design Ltd |                      |                            |                                            | Sheet 1 of 6 |


|                                                                                                                                                    | CORE RECOVERY & TESTS                                                                   | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling Progress Robert Same Casing Gepth/size | Depth (AL/ front or Total co Recove Soil or Soil or Soil or Fractur Depth Fractur Index | Description Description                                                                                                                                                                                                                                                                                                                                                                                                     |
| -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                    |                                                                                         | Firm brown slightly gravelly CLAY. Gravel is of angular fine to coarse limestone.                                                                                                                                                                                                                                                                                                                                           |
| -<br>-<br>-<br>-                                                                                                                                   |                                                                                         | +121.67 1.20 Light brown LIMESTONE. (Rotary open hole)                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                    |                                                                                         | (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -<br>-<br>-<br>-                                                                                                                                   | 1.90-3.00 85 68 36 190 4 215 N 220 143                                                  | Strong light brown/yellow brown, partially crystalline fine grained calcaceous LIMESTONE. Frequent recrystallised shell material. Generally fresh to slightly weathered but becoming highly weathered at 3.0m.  Strength is reduced to weak with extensive light brown clayey weathering products where most intensely weathered.                                                                                           |
| -<br>-<br>-<br>-                                                                                                                                   | 2.62 N 2.77 0 2.284 N Rec                                                               | Fractures extremely closely spaced, sub horizontal, undulating rough and open with orange brown and slight dark grey discolouration on fracture surface.                                                                                                                                                                                                                                                                    |
| -<br>-<br>-<br>-<br>-                                                                                                                              | 3.00-6.00 57 46 11 3.00 5.7                                                             | +119.52 3.35  Strong grey crystalline fine grained calcaceous LIMESTONE. Frequent                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                  | 3.46 7.7                                                                                | calcite veining and fossilised shell fragements. Generally slightly weathered but highly weathered neighbouring fractures where strength is reduced to weak with grey sandy clay weathering products.  3.35-3.46m - Fractures very closely spaced, undulating, rough and tight with orange brown discolouration on fracture surface.                                                                                        |
| -<br>-<br>-<br>-                                                                                                                                   | - 420 4.4 × ×                                                                           | 3.46-3.59m - 1 no sub vertical fracture (136mm). Undulating rough and wide with orange brown discolouration on fracture surface.  3.59-4.20m - Fractures very closely spaced, sub horizontal, stepped rough and tight with orange brown discolouration on fracture surface.  Very weak, thinly laminated light grey calcaceous fine grained SILTSTONE.  Slightly fossiliferous. Highly weathered/poorly liftled throughout. |
| REMARKS Hand excavated 0.0-1.2                                                                                                                     |                                                                                         | x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                       |
| Rotary Open Hole 1.2-<br>Rotary Coring 1.9-30m<br>Flushing medium-Air/N                                                                            | 1.9m<br>1.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| All dimensions in metres<br>Scale 1:32.3                                                                                                           | Client<br>Freddie Alcock                                                                | Equipment Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                                                                                                                                                            |

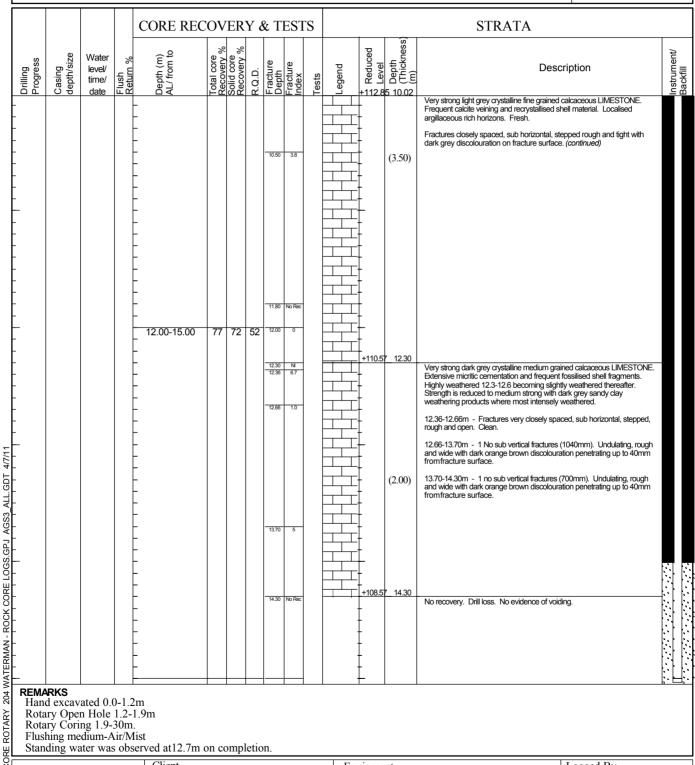
| SAII     | dimensions in metres | Client           | Equipment |                 | Logged By    |
|----------|----------------------|------------------|-----------|-----------------|--------------|
| B III    | G 1 1 22 2           | Freddie Alcock   | ' ' (     | Comacchio 450-P | Edward Lodge |
| <u>ا</u> | Scale 1:32.3         | 1 Todato 1 Hoock | ,         | Somaceme 180 1  | Edward Edage |





|                                                       | •                    |                            |                                            |              |  |
|-------------------------------------------------------|----------------------|----------------------------|--------------------------------------------|--------------|--|
| Location Heyford F                                    | BOREHOLE No          |                            |                                            |              |  |
| Job No<br>RT/11/52204                                 | Date <b>09-05-11</b> | Ground Level (m)<br>122.87 | Co-ordinates ()<br>E 453,318.9 N 227,202.0 | BH215        |  |
| Client<br>Waterman Energy, Environment and Design Ltd |                      |                            |                                            | Sheet 2 of 6 |  |




Hand excavated 0.0-1.2m Rotary Open Hole 1.2-1.9m Rotary Coring 1.9-30m. Flushing medium-Air/Mist

| RE ROTARY | Rotary Open Hole 1.2-1.9<br>Rotary Coring 1.9-30m.<br>Flushing medium-Air/Mist<br>Standing water was obser |                          |           |                 |                           |
|-----------|------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-----------------|---------------------------|
| GEOCO     | All dimensions in metres<br>Scale 1:32.3                                                                   | Client<br>Freddie Alcock | Equipment | Comacchio 450-P | Logged By<br>Edward Lodge |





|                                                       | The state of the s |                            |                                            |              |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|--------------|--|
| Location Heyford P                                    | BOREHOLE No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                            |              |  |
| Job No<br>RT/11/52204                                 | Date <b>09-05-11</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ground Level (m)<br>122.87 | Co-ordinates ()<br>E 453,318.9 N 227,202.0 | BH215        |  |
| Client<br>Waterman Energy, Environment and Design Ltd |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                            | Sheet 3 of 6 |  |



Standing water was observed at 12.7m on completion.

| Q A  | l dimensions in metres | Client           | Equipment |                 | Logged By    |
|------|------------------------|------------------|-----------|-----------------|--------------|
| 요[ ` | 0 1 1 20 2             | Freddie Alcock   | ' '       | Comacchio 450-P | Edward Lodge |
| GE   | Scale 1:32.3           | 1 Todate / Hoock |           | Comacemo 150 I  | Lawara Loage |







| Location Heyford P                                    | BOREHOLE No          |                            |                                            |                 |  |
|-------------------------------------------------------|----------------------|----------------------------|--------------------------------------------|-----------------|--|
| Job No<br><b>RT/11/52204</b>                          | Date <b>09-05-11</b> | Ground Level (m)<br>122.87 | Co-ordinates ()<br>E 453,318.9 N 227,202.0 | BH215           |  |
| Client<br>Waterman Energy, Environment and Design Ltd |                      |                            |                                            | Sheet<br>4 of 6 |  |

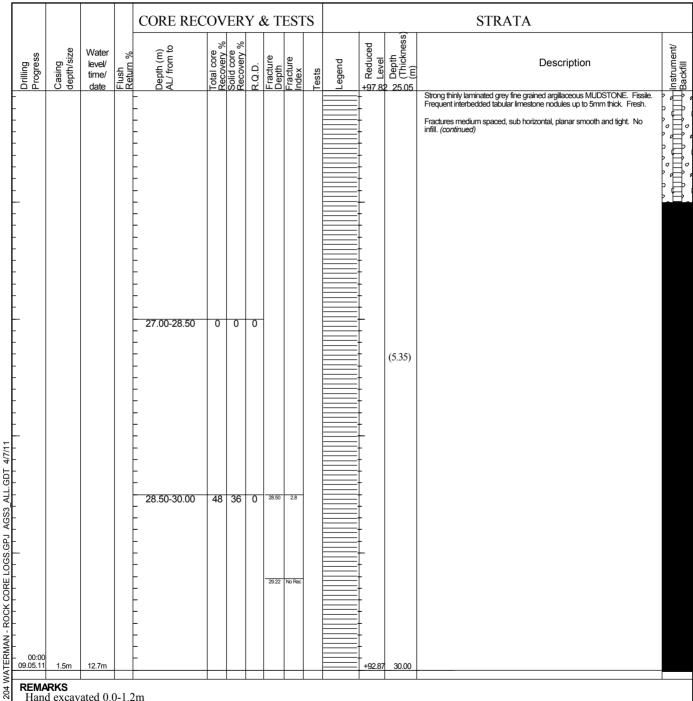
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 01 0                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CORE RECOVERY & TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| Drilling Progress Casing Casing Ample depth/size Ample Hiush Flush | OBORDAN (M)  OCAL/ from to OCAL/ from to OCACON (M) OCA | Description Descri | Instru                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3.70)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.00-21.00 83 79 9 18.00 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extremely weak, thinly cross laminated dark grey fir SANDSTONE. Frequent intertaminated lignite and final frequent fr | [ <b>F</b>             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.50 Na<br>18.55 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Medium strong, thinly laminated fine grained arenace Fissile. Fresh.  Fractures medium spaced, sub horizontal, undulatir reddish brown discolouration penetrating up to 10m surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ا ا                    |
| REMARKS Hand excavated 0.0-1.2m Rotary Open Hole 1.2-1.9 Rotary Coring 1.9-30m. Flushing medium-Air/Mis Standing water was obser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>9m<br>st<br>rved at12.7m on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| All dimensions in metres<br>Scale 1:32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Client<br>Freddie Alcock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Equipment Comacchio 450-P Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ged By<br>Edward Lodge |

| All dimensions in metres | Client         | Equipment       | Logged By    |
|--------------------------|----------------|-----------------|--------------|
| Scale 1:32.3             | Freddie Alcock | Comacchio 450-P | Edward Lodge |
| 0  20000                 |                |                 |              |





| Location Heyford P        | ark, Oxfordshire     |                            |                                            | BOREHOLE No |
|---------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204     | Date <b>09-05-11</b> | Ground Level (m)<br>122.87 | Co-ordinates ()<br>E 453,318.9 N 227,202.0 | BH215       |
| Client<br>Waterman Energy | Sheet 5 of 6         |                            |                                            |             |


|                                                                          | CORE RECOVERY & TESTS            |                        |                          |                          |                          | <u>.</u> |                         | STRATA            |       |                                       |                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------|----------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------|-------------------------|-------------------|-------|---------------------------------------|--------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gress<br>gress<br>gress<br>gr                                            | Water<br>level/<br>time/<br>date | Flush<br>Return %      | Depth (m)<br>AL/ from to | Fotal core<br>Recovery % | Solid core<br>Recovery % | R.Q.D.   | Fracture<br>Depth       | Fracture<br>Index | Fests | Puegend                               | Reduced<br>Level                     | Depth<br>(Thickness)<br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                          | uale                             | -                      | 21.00-24.00              |                          | 54                       | 52       | 20.15 20.20             | NI<br>3.6         |       |                                       | +102.6                               | 5.20.04                     | Medium strong, thinly laminated fine grained arenaceous SANDSTONE. Fissile. Fresh.  Fractures medium spaced, sub horizontal, undulating rough and tight with reddish brown discolouration penetrating up to 10mm from fracture surface. (continued)                                                                                                                                                                                                           |
|                                                                          |                                  |                        |                          |                          |                          |          | 21.80<br>21.90<br>22.10 | NI 5              |       |                                       | -                                    | (0.80)                      | Very strong light grey crystalline fine grained calcaceous LIMESTONE. Frequent interbedded argillaceous laminae up to 2mm thick. Fresh.  Fractures sub horizontal, stepped, rough and tight with dark grey discolouration on fracture surface.  Weak thinly intertaminated dark grey and brown fine grained argillaceous SILTSTONE and fine grained arenaceous sandstone. Frequent                                                                            |
|                                                                          |                                  |                        |                          |                          |                          |          | 22.20                   | 3.3<br>5          |       | × × × × × × × × × × × × × × × × × × × | +100.0                               | (0.70)                      | interbedded coal laminae. Slightly weathered throughout.  Fractures closely spaced, sub horizontal, undulating, rough and open with up to 2.5m dark grey sandy day infill.  Medium strong, thickly interlaminated grey crystalline fine grained calcaceous LIMESTONE and dark grey fine grained argillaceous sittstone.  Fresh in limestone horizons but highly weathered in sittstone where strength is reduced to weak with dark grey sandy clay weathering |
|                                                                          |                                  | -                      |                          |                          |                          |          | 23.20                   | 5.4               |       |                                       | -<br>-<br>-<br>-<br>-<br>-           | (1.85)                      | products.  Fractures very closely spaced, sub horizontal, undulating, rough and open with up to 1mm dark grey sandy clay infill and slight orange brown discolouration on fracture surface.                                                                                                                                                                                                                                                                   |
|                                                                          |                                  | -                      | 24.00-27.00              | 32                       | 20                       | 4        | 24.50                   | NI NI             |       |                                       | -<br>-<br>-<br>-<br>-<br>-<br>+98.22 | 24.65                       | Strong thinly laminated grey fine grained argillaceous MUDSTONE. Fissile. Frequent interbedded tabular limestone nodules up to 5mm thick. Fresh.                                                                                                                                                                                                                                                                                                              |
| REMARKS Hand excaval Rotary Open Rotary Corin, Flushing med Standing wat | Hole<br>g 1.9-3<br>lium-A        | 1.2-1<br>30m.<br>ir/Mi | .9m                      | on co                    | ompl                     | letio    | 24.95<br>on.            | No Rec            |       |                                       | ıipme                                |                             | Fractures medium spaced, sub horizontal, planar smooth and tight. No infill.  Logged By                                                                                                                                                                                                                                                                                                                                                                       |







BOREHOLE No Heyford Park, Oxfordshire Location **BH215** Job No **RT/11/52204** Co-ordinates () Ground Level (m) 122.87 E 453,318.9 N 227,202.0 09-05-11 Client Waterman Energy, Environment and Design Ltd Sheet 6 of 6



Hand excavated 0.0-1.2m Rotary Open Hole 1.2-1.9m Rotary Coring 1.9-30m. Flushing medium-Air/Mist

| RE ROTARY | Rotary Open Hole 1.2-1.9<br>Rotary Coring 1.9-30m.<br>Flushing medium-Air/Mist<br>Standing water was obser | 9m                       |           |                 |                           |
|-----------|------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-----------------|---------------------------|
| GEOCO     | All dimensions in metres<br>Scale 1:32.3                                                                   | Client<br>Freddie Alcock | Equipment | Comacchio 450-P | Logged By<br>Edward Lodge |





| Location Heyford P      | ark, Oxfordshire     |                         |                                            | BOREHOLE No |
|-------------------------|----------------------|-------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204   | Date <b>05-05-11</b> | Ground Level (m) 124.03 | Co-ordinates ()<br>E 453,143.8 N 226,911.5 | BH216       |
| Client<br>Waterman Ener | Sheet 1 of 2         |                         |                                            |             |

| CORE RECOVERY & TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                       |                                  |        | STRATA            |                                                    |          |        |                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------------------------|--------|-------------------|----------------------------------------------------|----------|--------|-------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| water  Samuel Cassing  Cassing  Cassing  Geothy  Lower Size  Geothy  G | Flush<br>Return % | Depth (m) AL/ from to | Recovery % Solid core Recovery % | R.Q.D. | -racture<br>Jepth | Fracture<br>Index                                  | ests     | Legend | S Reduced<br>Level                        | Depth<br>(Thickness)<br>(m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EMARKS Hand excavated 0.0 Rotary Coring 1.0- Flushing medium-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 2.90-5.90 90          | 1 5                              | 0      | 1.00              | NI 0 No Rec 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11. | <u>1</u> |        | +124.0<br>-<br>-<br>-<br>-<br>-<br>-<br>- | (1.00)                      | Strong light brown/yellow brown partially crystalline calcaceous LINESTONE. Frequent recrystallised shell material. Grerally fresh but completely weathered in non intact areas where recovered as weak gravel sized fragments or firm orange brown slightly sandy clay.  3.00-3.22m - 1 No sub vertical fracture (220mm) undulating rough and wide with orange brown sand gravel infill and discolouration on fracture surface.  3.22-4.00m - Fractures sub horizontal, very closely spaced, undulating, rough and open with orange brown penetrative discolouration on fracture surface and up to 2.5m orange brown penetrative discolouration on fracture surface.  4.00-4.27m - 1 no sub vertical fracture (270mm), undulating rough and wide with orange brown discolouration on fracture surface.  4.27-4.48m - 1 no sub vertical fracture (270mm), undulating rough and wide with orange brown discolouration on fracture surface.  4.60-4.95m - 1 no sub vertical fracture (270mm), undulating rough and wide with orange brown discolouration on fracture surface.  5.00-5.13m - 1 no sub vertical fracture (270mm), undulating rough and wide with orange brown discolouration on fracture surface. |





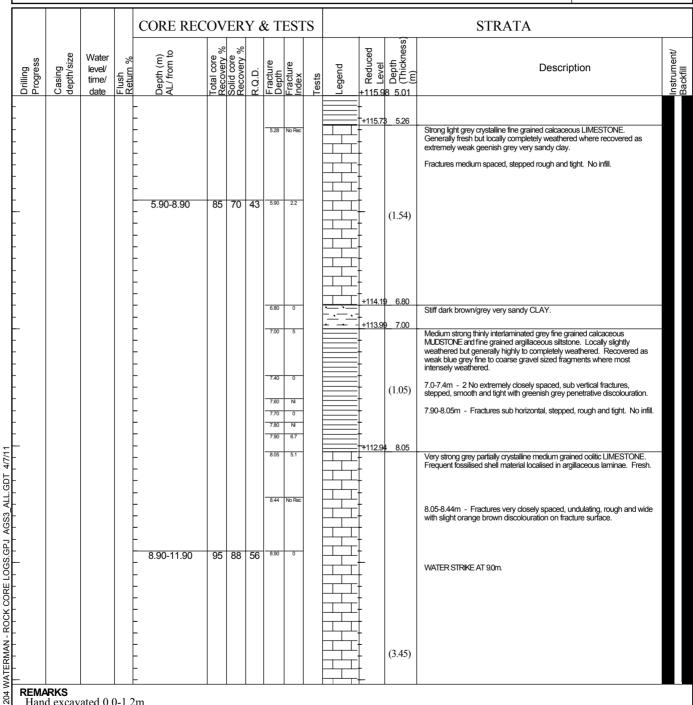
|                              |                      |                            | · partiti                                  |             |
|------------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Location Heyford P           | ark, Oxfordshire     |                            |                                            | BOREHOLE No |
| Job No<br><b>RT/11/52204</b> | Date <b>05-05-11</b> | Ground Level (m)<br>124.03 | Co-ordinates ()<br>E 453,143.8 N 226,911.5 | BH216       |
| Client<br>Waterman Ener      | Sheet 2 of 2         |                            |                                            |             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CORE RECOVERY & TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Drilling Progress Casing depth/size depth/size rate All Share All | Depth (m) AL/ from to AL/ from to Total core Recovery % Solid core Recovery % Fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Legend  Legend  Legend  Description  (m)  Instrument  Backfill  Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.90-8.90 90 81 62 590 10 6.00 N 6.12 5.2 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2.5 6.70 2 | +118.70 5.33  Weak thinly laminated fine grained slightly calcaceous argillaceous MUDSTONE. Slightly weathered.  Fractures sub horizontal, planar, smooth and tight. Clean.  Very weak, becoming strong at 5.5m, grey crystalline medium grained calcaceous LIMESTONE. Abundant recrystallised colites. Frequent calcite veining. Completely weathered 5.33-5.5m becoming fresh thereafter. Considerable reduction in strength and recovered as grey sandy clay where most intensely weathered.  Fractures, sub horizontal, very closely spaced, undulating rough and open with slight orange brown discolouration on fracture surface.  Medium strong thickly internaminated fine grained argillaceous MUDSTONE and medium grained calcaceous limestone. Frequent fossilised shells and shell fragments centred along bedding surfaces. Highly weathered throughout with greenish grey penentrative discolouration. Fractures sub horizontal, undulating, rough and open with slight orange brown discolouration on fracture surface and dark grey sandy clay infill.  Hand in the strong thinly laminated fine grained argillaceous MUDSTONE. Frequent interfaminated calcaceous material. Slightly weathered but poorly lithified throughout. Highly weathered in non intact areas where strength is reduced to very weak.  Fractures sub horizontal, closely spaced stepped, smooth and tight with slight flight grey clayey sand coatings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.50 10 8.20 0 8.60 No Rec 8.90-10.00 32 32 23 8.90 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1.20)  +116.13 7.90  Medium strong becoming weak with depth, thinly laminated greenish grey calcaceous fine grained argillaceous MUDSTONE. Freshisgling weathered at 8.6m. Recovered at 8.5m. Recovered at |  |  |  |  |  |  |  |
| REMARKS Hand excavated 0.0-1.0m Rotary Coring 1.0-10m. Flushing medium-Air/Mist  Client Scale 1:32.3  Client Freddie Alcock  Equipment Comacchio 450-P Edward Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |





| Location Heyford P        | ark, Oxfordshire     |                         |                                            | BOREHOLE No |
|---------------------------|----------------------|-------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204     | Date <b>04-05-11</b> | Ground Level (m) 120.99 | Co-ordinates ()<br>E 452,578.5 N 226,447.1 | BH217       |
| Client<br>Waterman Energy | Sheet 1 of 6         |                         |                                            |             |


|                                               |                           |                            | CORE REC                 | OV                       | ER                       | Υ &    | ι Tl                         | EST               | S     |                         |                                 |                                    | STRATA                                                                                                                                                                                                                                                                                                                                                            |             |
|-----------------------------------------------|---------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------|------------------------------|-------------------|-------|-------------------------|---------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| rilling<br>rogress<br>asing<br>epth/si        | Water level/ time/ date i | Flush<br>Return %          | Depth (m)<br>AL/ from to | Total core<br>Recovery % | Solid core<br>Recovery % | 3.Q.D. | Fracture<br>Depth            | Fracture<br>Index | Tests | Legend                  | Reduced<br>Level                | တ် Depth<br>S (Thickness)<br>S (m) | Description                                                                                                                                                                                                                                                                                                                                                       | Instrument/ |
| -                                             | date                      | -                          |                          |                          | 0711                     |        |                              | <u> </u>          |       |                         | -<br>-<br>-                     | (0.50)                             | MADE GROUND. Dark brown slightly clayey slightly gravelly fine sand.<br>Gravel is of angular fine to coarse limestone.                                                                                                                                                                                                                                            |             |
| -                                             |                           | -                          |                          |                          |                          |        |                              |                   |       |                         | +120.4<br>-<br>-<br>-<br>+120.0 | (0.40)                             | Stiff orange brown very gravelly CLAY with many cobbles. Gravel is of angular fine to coarse limestone. Cobbles are angular limestone.                                                                                                                                                                                                                            |             |
| -<br>-<br>-<br>-<br>-<br>-<br>-               |                           | -<br>-<br>-<br>-<br>-<br>- |                          |                          |                          |        |                              |                   |       |                         | <br>-<br>-<br>-<br>-<br>-       | (1.20)                             | Yellow brown LIMESTONE (rotary open hole)                                                                                                                                                                                                                                                                                                                         |             |
| -<br>-<br>-                                   |                           | E                          | 2.10-2.90                | 94                       | 75                       | 13     | 2.10                         | 8.3               |       | <del>     </del>        | +118.8                          | 2.10                               | Strong light brown/yellow brown partially crystalline fine grained                                                                                                                                                                                                                                                                                                |             |
| -                                             |                           | E                          | 2.10-2.50                | 34                       | 73                       | 13     |                              |                   |       |                         | -<br>-<br>-                     |                                    | calcaceous LIMESTONE. Frequent recrystallised shell material. Generally slightly weathered but completely weathered in non intact areas where recovered as orange brown very sandy clay.                                                                                                                                                                          |             |
| -<br>-                                        |                           | F                          |                          |                          |                          |        |                              |                   |       |                         | -                               | (0.90)                             | Fractures extremely closely spaced, sub horizontal, undulating rough and open with orange brown discolouration on fracture surface.                                                                                                                                                                                                                               |             |
| -<br>-<br>-                                   |                           | -<br> -<br> -              | 2.90-5.90                | 79                       | 63                       | 40     | 2.70<br>2.85<br>2.90<br>3.00 | No Rec<br>Ni      |       |                         | -<br>-<br>-<br><u>+117.9</u>    | 3.00                               |                                                                                                                                                                                                                                                                                                                                                                   |             |
| -                                             |                           | -<br>-<br>-                |                          |                          |                          |        | 3.16                         | NI<br>8.9         |       | <del>       </del>      | -<br>-<br>-                     | (0.70)                             | Extremely weak, becoming very strong at 3.25m, crystalline fine to medium grained calcaceous LIMESTONE. Frequent recrystallised shell material. Generally fresh but completely weathered 3.0-3.25m where recovered as stiff blue grey silty gravely clay.                                                                                                         |             |
| -<br>-                                        |                           | F                          |                          |                          |                          |        |                              |                   |       |                         | -<br>-                          |                                    | 3.00-3.16m - Unfractured insitu.      3.25-3.70m - Fractures very closely spaced, sub horizontal, undulating rough and wide with orange brown penetrative discolouration on fracture.                                                                                                                                                                             |             |
| -<br>-<br>-                                   |                           | -                          |                          |                          |                          |        | 3.70                         | NI                |       | × × × × × × × × × × × × | <u>+117.2</u><br>-<br>-         | (0.30)                             | surface.  Weak thinly laminated dark grey slightly calcaceous fine grained argillaceous SILTSTONE. Completely weathered recovered as firm grey sandy clay.                                                                                                                                                                                                        |             |
| -<br>-<br>-                                   |                           | E                          |                          |                          |                          |        | 4.00                         | 5                 |       |                         | <u>+116.9</u><br>-<br>-         | (0.40)                             | Very strong light grey crystalline fine grained calcaceous LIMESTONE.<br>Frequent recrystallised shell material. Fresh.                                                                                                                                                                                                                                           |             |
| REMARKS Hand excavat                          |                           | -                          |                          |                          |                          |        | 4.40                         | 3.4               |       |                         | -<br><u>+116.5</u><br>-<br>-    | \ /                                | Fractures very closely spaced, sub horizontal, undulating rough and wide with orange brown penetrative discolouration on fracture surface.  Weak to medium strong, thinly laminated slightly greenish grey calcaceous fine grained argillaceous MUDSTONE. Frequent intertaminated slitstone horizons. Generally moderately weathered but locally highly weathered |             |
| -<br> -<br> -                                 |                           | -<br> -<br> -              |                          |                          |                          |        |                              |                   |       |                         | -<br>-<br>-                     | (0.86)                             | where strength is reduced to weak with greenish grey clayey weathering products.  Fractures closely spaced, sub horizontal, stepped, rough and tight with slight grey discolouraton on fracture surface.                                                                                                                                                          |             |
| Rotary Open<br>Rotary Coring<br>Flushing medi | Hole 1<br>g 2.1-3         | .2-2.<br>0m.               | 1m                       | ı                        |                          |        |                              |                   |       | •                       | <del>-</del>                    |                                    |                                                                                                                                                                                                                                                                                                                                                                   |             |
| All dimensions ir<br>Scale 1:32.              |                           | es                         | Client<br>Fredd          | ie A                     | deo                      | ck     |                              |                   |       | Equ                     | iipme                           | nt                                 | Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                                                                                                            |             |

| All dimensions in metres                 | Client         | Equipment       | Logged By    |
|------------------------------------------|----------------|-----------------|--------------|
| Scale 1:32.3                             | Freddie Alcock | Comacchio 450-P | Edward Lodge |
| J  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                |                 | _            |





|                          |                      |                            | •                                          |              |
|--------------------------|----------------------|----------------------------|--------------------------------------------|--------------|
| Location Heyford Pa      | ark, Oxfordshire     |                            |                                            | BOREHOLE No  |
| Job No<br>RT/11/52204    | Date <b>04-05-11</b> | Ground Level (m)<br>120.99 | Co-ordinates ()<br>E 452,578.5 N 226,447.1 | BH217        |
| Client<br>Waterman Energ | gy, Environment and  | Design Ltd                 |                                            | Sheet 2 of 6 |



Hand excavated 0.0-1.2m Rotary Open Hole 1.2-2.1m Rotary Coring 2.1-30m. Flushing medium-Air/Mist

| RE ROTARY | Rotary Open Hole 1.2-2.1<br>Rotary Coring 2.1-30m.<br>Flushing medium-Air/Mist |                          |           |                 |                           |
|-----------|--------------------------------------------------------------------------------|--------------------------|-----------|-----------------|---------------------------|
| GEOCO     | All dimensions in metres<br>Scale 1:32.3                                       | Client<br>Freddie Alcock | Equipment | Comacchio 450-P | Logged By<br>Edward Lodge |





| Location Heyford I           | Park, Oxfordshire    |                            |                                            | BOREHOLE No |
|------------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Job No<br><b>RT/11/52204</b> | Date <b>04-05-11</b> | Ground Level (m)<br>120.99 | Co-ordinates ()<br>E 452,578.5 N 226,447.1 | BH217       |
| Client<br>Waterman Ene       | Sheet 3 of 6         |                            |                                            |             |

| 8A1 | l dimensions in metres | Client           | Equipment       | Logged By    |
|-----|------------------------|------------------|-----------------|--------------|
| шΙ  | 0 1 1 22 2             | Freddie Alcock   | Comacchio 450-P | Edward Lodge |
| ග   | Scale 1:32.3           | 1 reddie 7 neoek | Comacemo 150 1  | Lawara Loage |





| Location Heyford F      | Park, Oxfordshire    |                            |                                            | BOREHOLE No |
|-------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204   | Date <b>04-05-11</b> | Ground Level (m)<br>120.99 | Co-ordinates ()<br>E 452,578.5 N 226,447.1 | BH217       |
| Client<br>Waterman Ener | Sheet 4 of 6         |                            |                                            |             |

|                      |                      |                                  |                   | CORE REC                 | ECOVERY & TESTS |                                       |          |                   |                   |       |                           |                                                                    |                                     | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|----------------------|----------------------------------|-------------------|--------------------------|-----------------|---------------------------------------|----------|-------------------|-------------------|-------|---------------------------|--------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Progress | Casing<br>depth/size | Water<br>level/<br>time/<br>date | Flush<br>Return % | Depth (m)<br>AL/ from to | otal core       | Solid core<br>Recovery %              | R.Q.D.   | Fracture<br>Depth | Fracture<br>Index | Fests | pueße-                    | Reduced<br>Level                                                   | 9 Depth<br>10 (Thickness)<br>10 (m) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                    |                      | udic                             | -                 |                          |                 | , , , , , , , , , , , , , , , , , , , | <u>u</u> | 16.05             |                   |       |                           |                                                                    | 0 13.03                             | Weak blue grey thinly laminated calcaceous fine grained argillaceous MUDSTONE. Highly fossiliferous. Abundant partially fossilised shell fragments centred along bedding surfaces. Localised coarse grained sand laminae up to 5mm thick. Poorly lithlified throughout but generally fresh. Highly weathered neighbouring sandy areas where strength is reduced with blue grey sandy clay weathering products.  Fractures medium spaced, sub horizontal, stepped, rough and tight with slight dark greenish grey discolouration on fracture surface. (continued) |
| -                    |                      |                                  | -                 |                          |                 |                                       |          | 16.20             | 0                 |       | × × × × × × × × × × × × × | +104.7                                                             | 16.20                               | Weak grey fine grained very calcaceous SILTSTONE. Slightly weathered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                      |                                  | _                 |                          |                 |                                       |          | 16.55             | No Rec            |       | * * * *<br>* * * *        | +104.4                                                             | (0.35)<br>1 16.55                   | Unfractured insitu.  No recovery. Drill loss. No evidence of voiding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                      |                                  |                   |                          |                 |                                       |          |                   |                   |       |                           | +<br>-<br>-<br>-<br>-<br>-<br>-                                    | (1.35)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                    |                      |                                  | -                 | 17.90-20.90              | 31              | 5                                     | 5        | 17.90             | NI                |       |                           | +103.0                                                             | (0.94)                              | Weak dark grey fine grained arenaceous SANDSTONE. Generally completely weathered with the exception of some isolated core stones. Recovered as extremely weak fine grained sand fragments where most intensely weathered.  Fractures medium spaced, sub horizontal, stepped smooth and tight with slight light brown silty sand coatings.                                                                                                                                                                                                                        |
|                      |                      |                                  | _                 |                          |                 |                                       |          | 18.60             | 4.2<br>No Rec     |       |                           | -<br>+102.1                                                        | 5 18.84                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rota                 | d excav              | n Hole                           | 1.2 - 2           | .1m                      |                 |                                       |          | 10.89             | NO MEC            |       |                           | +<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | (2.06)                              | No recovery. Drill loss. No evidence of voiding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rvota                | uy COII<br>hina ma   | ng 2.1-<br>dium-A                | ir/M              | ist                      |                 |                                       |          |                   |                   |       |                           |                                                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Flusl                | ining inc            |                                  |                   | Client                   |                 |                                       |          |                   |                   |       |                           |                                                                    |                                     | Logged By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

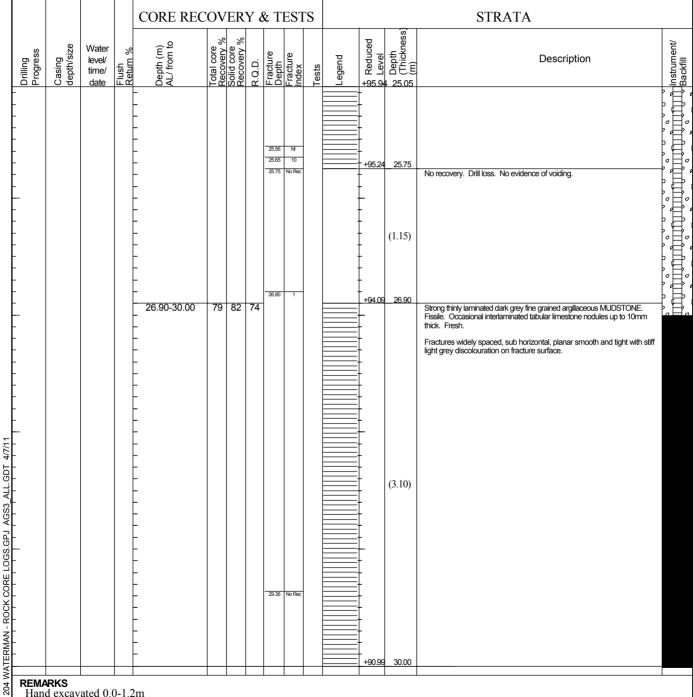






BOREHOLE No Heyford Park, Oxfordshire Location **BH217** Job No **RT/11/52204** Co-ordinates () Date Ground Level (m) E 452,578.5 N 226,447.1 120.99 04-05-11 Client Waterman Energy, Environment and Design Ltd Sheet 5 of 6

|                      | CORE RECOVERY & TESTS                                                        |                                          |                                                                                             |                          |                          |                          |        | & T                                                | EST               | S     |        |                                                          | ~                                 | STRATA                                                                                                                                                                                                                                                                                                                                               |
|----------------------|------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------|----------------------------------------------------|-------------------|-------|--------|----------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Progress | Casing<br>depth/size                                                         | Water<br>level/<br>time/<br>date         | Flush<br>Return %                                                                           | Depth (m)<br>AL/ from to | Total core<br>Recovery % | Solid core<br>Recovery % | R.Q.D. | Fracture<br>Depth                                  | Fracture<br>Index | Tests | Legend | + Seduced<br>FOOTH<br>Footh                              | Depth<br>70 (Thickness)<br>70 (m) | Description  No recovery. Drill loss. No evidence of voiding. (continued)                                                                                                                                                                                                                                                                            |
|                      |                                                                              |                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 20.90-23.90              | 100                      | 48                       | 26     | 20.90                                              | NI                |       | ×      | -<br>-<br>-<br>-<br>+100.09                              | (1.10)                            | Light grey silty medium SAND.                                                                                                                                                                                                                                                                                                                        |
|                      |                                                                              |                                          |                                                                                             |                          |                          |                          |        | 22.45<br>22.50<br>22.55<br>22.60<br>22.80<br>22.80 |                   |       | ×      | -<br>-<br>-<br>+98.99<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ` ′                               | Very weak thinly cross laminated, dark grey/brown fine grained arenaceous SANDSTONE. Poorly lithlified throughout but generally fresh. Highly weathered in non intact areas and neighbouring fractures where recovered as extremely weak coarse grained sand fragments.  Fractures medium spaced, sub horizontal, planar rough and tight. No infill. |
|                      |                                                                              |                                          |                                                                                             | 23.90-26.90              | 62                       | 58                       | 36     | 23.42<br>23.50<br>23.90                            | NI 0              |       |        | -<br>-<br>-<br>-<br>-<br>+97.09                          | 23.90                             | Weak thinly interlaminated dark grey and grey fine grained argillaceous MUDSTONE and fine grained argillaceous siltstone. Abundant fossilised shell remains. Highly weathered/poorly lithrified throughout. Recovered as very stiff sandy slightly gravelly clay.                                                                                    |
|                      |                                                                              |                                          | -<br>-<br>-<br>-<br>-                                                                       |                          |                          |                          |        |                                                    |                   |       |        | -<br>-<br>-<br>-<br>-                                    | (1.85)                            | 23.90-25.56m - Fractures closely spaced, sub horizontal, undulating rough and tight with slight orange brown discolouration on fracture surface.  25.65-25.75m - Fractures medium spaced, sub horizontal, planar rough and tight. No infill.                                                                                                         |
| TT                   | d excav<br>d excav<br>ary Oper<br>ary Cori<br>hing me<br>ensions<br>cale 1:3 | ated 0.0<br>n Hole<br>ng 2.1-<br>edium-A | 0-1.2<br>1.2-2<br>30m.<br>sir/M                                                             | 2.1m                     |                          |                          |        |                                                    |                   |       |        |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                      |
| l dim                | ensions                                                                      | in metr                                  | es                                                                                          | Client<br>Fredd          | lie A                    | dco                      | ck     |                                                    |                   |       | Equ    | iipme                                                    | nt                                | Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                                                                                               |


| ŠA:      | I dimensions in metres | Client           | Equipment       | Logged By    |
|----------|------------------------|------------------|-----------------|--------------|
| ŭI       | 0 1 1 22 2             | Freddie Alcock   | Comacchio 450-P | Edward Lodge |
| <u>ග</u> | Scale 1:32.3           | 1 Tedate 7 Heoek | Comacemo 150 1  | Lawara Loage |







**BOREHOLE No** Heyford Park, Oxfordshire Location **BH217** Job No **RT/11/52204** Co-ordinates () Ground Level (m) 120.99 E 452,578.5 N 226,447.1 04-05-11 Client Waterman Energy, Environment and Design Ltd Sheet 6 of 6



**REMARKS** 

Hand excavated 0.0-1.2m Rotary Open Hole 1.2-2.1m Rotary Coring 2.1-30m. Flushing medium-Air/Mist

| RE ROTARY | Rotary Open Hole 1.2-2.1<br>Rotary Coring 2.1-30m.<br>Flushing medium-Air/Mist | m                        |           |                 |                           |
|-----------|--------------------------------------------------------------------------------|--------------------------|-----------|-----------------|---------------------------|
| GEOCO     | All dimensions in metres<br>Scale 1:32.3                                       | Client<br>Freddie Alcock | Equipment | Comacchio 450-P | Logged By<br>Edward Lodge |





| Location Heyford P       | ark, Oxfordshire     |                            |                                            | BOREHOLE No |
|--------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204    | Date <b>05-05-11</b> | Ground Level (m)<br>124.22 | Co-ordinates ()<br>E 452,320.4 N 226,406.4 | BH218       |
| Client<br>Waterman Energ | Sheet 1 of 2         |                            |                                            |             |

|                      |                                      |                                  |                   | CORE RE                  | COV                      | ER                       | Υð     | & T               | EST               | rs .  |             |                 |                             | STRATA                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|--------------------------------------|----------------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------|-------------------|-------------------|-------|-------------|-----------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Progress | Casing<br>depth/size                 | Water<br>level/<br>time/<br>date | Flush<br>Return % | Depth (m)<br>AL/ from to | Total core<br>Recovery % | Solid core<br>Recovery % | R.Q.D. | Fracture<br>Depth | Fracture<br>Index | Tests | Legend      | Reduced Reduced | Depth<br>(Thickness)<br>(m) |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -<br>+124.0     | 2 0.20                      | MADE GROUND dark brown very clayey medium sand (topsoil).                                                                                                                                                                                                                                                                                                                   |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             | Firm orange brown slightly gravelly CLAY with some cobbles. Gravel is of angular fine to coarse limestone. Cobbles are angular limestone.                                                                                                                                                                                                                                   |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               | (0.70)                      |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               | (0.70)                      |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   | 0.90-3.00                | 40                       | 27                       | 0      | 0.90              | 16.7              |       |             | +123.3          | 2 0.90                      | Strong light brown/yellow brown partially crystalline calcaceous                                                                                                                                                                                                                                                                                                            |
|                      |                                      |                                  | -                 | 0.90-3.00                | 40                       | 21                       |        | 1.20              | 10 8              |       |             | -<br>-<br>-     |                             | Study gight brownyellow universitied shell material. Generally fresh/slightly weathered but highly weathered neighbouring sub vertical fractures, where strength is reduced to weak with yellow brown sandy clay weathering products. Fractures sub horizontal, very closely spaced, undulating, rough and open with slight orange brown discolouration on fracture surface |
|                      |                                      |                                  |                   |                          |                          |                          |        | 1.55              | 11.1              |       |             | -               |                             | 1.20-1.30m - 1 No. sub vertical fracture (100mm) undulating rough and wide with some red brown discolouration on fracture surface.                                                                                                                                                                                                                                          |
|                      |                                      |                                  |                   |                          |                          |                          |        | 1.73              | No Rec            |       |             | _               |                             | l l                                                                                                                                                                                                                                                                                                                                                                         |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -<br>-          | (2.50)                      | 1.55-1.73m - 2 No. extremely closely spaced sub vertical fractures (200mm). Undulating rough and tight with orange brown discolouration and light brown sandy clay infill.                                                                                                                                                                                                  |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -<br>-          | (2.50)                      |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             | <br>                                                                                                                                                                                                                                                                                                                                                                        |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       | <del></del> | -<br>-          |                             |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   | 3.00-6.00                | 86                       | 78                       | 43     | 3.00              | 7.5               |       |             | _               |                             | >                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | _               |                             |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        | 3.40<br>3.45      | 40<br>NI          |       | $\equiv$    | +120.8          | 2 3.40                      | Medium strong light grey fine grained calcaceous LIMESTONE. Generally                                                                                                                                                                                                                                                                                                       |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       | <del></del> | -               |                             | slightly weathered. Highly weathered neighbouring fractures where strength is reduced to weak with dark grey clay weathering products.                                                                                                                                                                                                                                      |
|                      |                                      |                                  | F                 |                          |                          |                          |        | 3.70              | 10                |       |             | -               |                             | =                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                      |                                  |                   |                          |                          |                          |        | 3.90              | 0                 |       |             | _               |                             | 3.40-3.9m - Fractures extremely closely spaced, sub horizontal                                                                                                                                                                                                                                                                                                              |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             | undulating, rough and open with up to 2.5mm orange brown dayey sand infill.                                                                                                                                                                                                                                                                                                 |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             | 3.70-3.90m - Fractures extremely closely spaced, sub horizontal undulating, rough and open with up to 2.5mm orange brown clayey sand                                                                                                                                                                                                                                        |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -               |                             | infill.                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                      |                                  |                   |                          |                          |                          |        |                   |                   |       |             | -<br>-          |                             |                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                                      |                                  |                   |                          |                          |                          |        | 4.90              | 3                 |       |             | <u>-</u>        |                             |                                                                                                                                                                                                                                                                                                                                                                             |
| Han<br>Rota<br>Flus  | ARKS d excavery Cori hing me ding wa | ng 0.9-<br>dium-A                | 10m.<br>.ir/Mi    |                          | on co                    | ompe                     | etior  | n and             | l rem             | naine | ed at 8.0   | m aft           | er 20 m                     | ninutes.                                                                                                                                                                                                                                                                                                                                                                    |
| _                    |                                      | in metr                          |                   | Client                   |                          |                          |        |                   |                   |       | Em          | iipme           | nt.                         | Logged By                                                                                                                                                                                                                                                                                                                                                                   |





| Location Heyford P       | ark, Oxfordshire     |                            |                                            | BOREHOLE No |
|--------------------------|----------------------|----------------------------|--------------------------------------------|-------------|
| Job No<br>RT/11/52204    | Date <b>05-05-11</b> | Ground Level (m)<br>124.22 | Co-ordinates ()<br>E 452,320.4 N 226,406.4 | BH218       |
| Client<br>Waterman Energ | Sheet 2 of 2         |                            |                                            |             |

| Water by grand characters in Medium along girt gay for grand girt gay for grand girt gay for grand girt gar gar gar gay gar                                                                                                                                                                                                                                                                                |                             |                      |                          |                   | CORE REC                 | COV                      | ΈR                       | Υð     | & T                          | EST             | S     |        |                                 | ~ ~ 1                                | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                    |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------|------------------------------|-----------------|-------|--------|---------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Medium strong light grey fine grained calcasoosas ILMESTONE. Generally stightly westined calcasoosas ILMESTONE. Generally stightly westined. Highly lives interested calcasoosas ILMESTONE. Generally stightly westined. Highly lives interested calcasoosas ILMESTONE. Generally stightly westined. Highly lives interested and surprised to week with dark grey day vestineng products. Confirmed  4.90.5.57m - Fractures, medium spaced, sub indicental, undulating, mugh and open with up to 2.5mm grey sandy day intil.  6.00-9.00 97 96 68 600 33 - Highly sentinested dark grey stightly calcasoosas fine grained graph and wide with slight grey claries of sub-indicated. Indicated indicated in indicated.  7.20 0.0.57) Week thirty luminosted dark grey stightly calcasoosas fine grained graph and wide with slight grey claries of sub-indicated production. In the confirmal sub-indicated sub-indicated production. In the confirmal sub-indicated sub-indicated production on fracture sub-indicated  | Orilling<br>Progress        | Casing<br>depth/size | Water<br>level/<br>time/ | Flush<br>Return % | Depth (m)<br>AL/ from to | Fotal core<br>Recovery % | Solid core<br>Recovery % | 8.Q.D. | -racture<br>Depth            | racture<br>ndex | Fests | -egend |                                 | Depth<br>(Thickness)<br>(m)          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                                                                  | nstrument/ |
| Weak thinly laminated dark grey slightly calcaceous fine grained argilaceous MUDSTONE. Frequent interbedded sity sand laminae up to 0.5mm thick.    Tractures very closely spaced, sub horizontal, planar, rough and tight. No infill.   Weak thinly laminated dark grey slightly calcaceous fine grained argilaceous MUDSTONE. Frequent calcite very closely spaced, sub horizontal, planar, rough and tight. No infill.   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated gark grey discolouration on fracture argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous fine grained argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous limited argilaceous MUDSTONE. Highly weathered throughout.   Stri N   Weak thinly laminated, strong blue grey slightly calcaceous limited argilaceous MUDSTONE. Fractures medium spaced, sub horizontal, planar, rough and tight. No infill.   9.00-10.00   83   83   83   88   83   88   80   80                                                                                                                                                                                                                                                                                                                                                                   | -                           |                      | date                     | -                 |                          |                          |                          |        | 5.57                         | No Rec          |       |        |                                 |                                      | slightly weathered. Highly weathered neighbouring strength is reduced to weak with dark grey clay wes (continued)  4.90-5.57m - Fractures, medium spaced, sub horizorough and open with up to 2.5mm grey sandy clay in 6.00-7.23m - Fractures very closely spaced, sub horough and wide with slight grey clayey sand coating                                                                                                                                                                                                     | fractures where athering products.  ontal, undulating, nfill.  orizontal, undulating                                                               |            |
| +115.5   8.71   Very strong crystalline grey medium grained calcaceous LIMESTONE.    September   Septe | -                           |                      |                          |                   |                          |                          |                          |        | 7.60                         | 0 30            |       |        | +116.62                         | (0.37)<br>2 7.60<br>(0.53)<br>9 8.13 | argillaceous MUDSTONE. Frequent interbedded silty<br>0.5mm thick.<br>Fractures very closely spaced, sub horizontal, plana<br>slight orange brown clayey sand coatings.<br>Strong grey crystalline medium grained calcaceous Lli<br>calcite veining and fossilised shell fragments. Fresh.<br>Fractures extremely closely spaced, sub horizontal,<br>open with slight orange brown and dark grey discola<br>surface.<br>Weak thinly laminated, strong blue grey slightly calca<br>argillaceous MUDSTONE. Highly weathered through | r sand laminae up to<br>ar, rough and tight with<br>MESTONE. Frequent<br>stepped, rough and<br>ouration on fracture<br>aceous fine grained<br>out. |            |
| 00:00<br>05:05:11 1.5m 8m +114:22 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>-<br>00:00<br>05.05.11 | 1.5m                 | 8m                       |                   | 9.00-10.00               | 83                       | 83                       | 38     | 8.80<br>8.91<br>9.00<br>9.15 | No Rec<br>6.7   |       |        | -<br>-<br>-<br>-<br>-<br>-<br>- | (1.29)                               | Generally fresh with slight greenish grey discolourat  9.00-9.15m - Fractures medium spaced, sub horizorand tight. No infill.  9.15-9.83m - Fractures closely spaced, sub horizor                                                                                                                                                                                                                                                                                                                                                | ontal, planar, rough                                                                                                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ensions              | in metr                  | es                | Client<br>Fredd          | lie A                    | dco                      | ck     |                              |                 |       | Equ    | iipme                           | nt                                   | Comacchio 450-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ged By<br>Edward Lodge                                                                                                                             |            |

| All dimensions in metres | Client         | Equipment       | Logged By    |
|--------------------------|----------------|-----------------|--------------|
| Scale 1:32.3             | Freddie Alcock | Comacchio 450-P | Edward Lodge |





| Location Heyford P      | ark, Oxfordshire     |                            | -                                          | BOREHOLE No     |
|-------------------------|----------------------|----------------------------|--------------------------------------------|-----------------|
| Job No<br>RT/11/52204   | Date <b>05-05-11</b> | Ground Level (m)<br>121.32 | Co-ordinates ()<br>E 452,242.8 N 226,132.9 | BH219           |
| Client<br>Waterman Ener | gy, Environment and  | Design Ltd                 |                                            | Sheet<br>1 of 2 |

|                                       |                      |                                    |                                   | CORE REC                 | COV        | ER                       | Υ &    | τ.                   | EST                                  | S     |        |                                                     | - <del></del> | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|---------------------------------------|----------------------|------------------------------------|-----------------------------------|--------------------------|------------|--------------------------|--------|----------------------|--------------------------------------|-------|--------|-----------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Drilling<br>Progress                  | Casing<br>depth/size | Water<br>level/<br>time/<br>date   | Flush<br>Return %                 | Depth (m)<br>AL/ from to | Total core | Solid core<br>Recovery % | R.Q.D. | Fracture<br>Depth    | Fracture<br>Index                    | Tests | Legend | Reduced 13                                          | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Instrument/ |
|                                       |                      |                                    | -                                 |                          |            |                          |        |                      |                                      |       |        | +121.2<br>-<br>-<br>+120.9<br>-<br>-<br>-<br>-<br>- | (0.30) 2 0.40 | MADE GROUND dark brown very clayey medium sand (topsoil).  Firm orange gravelly CLAY with some cobbles. Cravel is of angular fine to coarse limestone. Cobbles are angular limestone.  Light brown LIMESTONE. (Rotary open hole)                                                                                                                                                                                                                                                      | ı           |
|                                       |                      |                                    |                                   | 2.00-5.00                | 83         | 53                       | 14     | 2.00                 | NI 18.9                              |       |        | -<br>-<br>-<br>-<br>+1119.3<br>-<br>-<br>-<br>-     | (1.30)        | Medium strong light brown/yellow brown partially crystalline fine grained calcaceous LIMESTONE. Frequent recrystallised shell material. Generally moderately weathered but completely weathered in non intact areas where recovered as stiff light brown gravelly clay. Strength reduced to extremely weak where most intensely weathered.  Fractures extremely closely spaced sub horizontal, undulating rough and open with slight orange brown discolouration on fracture surface. |             |
|                                       |                      |                                    | -                                 |                          |            |                          |        | 3.30<br>3.54<br>3.60 | 20<br>NI<br>13.3<br>8.3<br>NI<br>3.4 |       |        | -<br>-<br>-<br>-<br>+118.0<br>-<br>-<br>-<br>-      | 2 3.30        | Strong grey partially crystalline medium grained oolitic calcaceous LIMESTONE. Generally fresh/slightly weathered but highly weathered neighbouring fractures and in non intact areas. Strength reduced to weak with grey clayey sand weathering products where most intensely weathered.                                                                                                                                                                                             |             |
|                                       |                      |                                    | -                                 |                          |            |                          |        | 4.48                 | No rec                               |       |        | -<br>-<br>-<br>-<br>-<br>-<br>-                     | (2.15)        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| REMA<br>Hand<br>Rota<br>Rota<br>Flush | 1                    | ated 0.0<br>n Hole (ng 2.0nedium-A | )-0.51<br>).5m-<br>1-10n<br>ir/Mi | 2.0m<br>n.               |            |                          |        |                      |                                      |       |        |                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| ll dim                                | ensions              | in metr                            | es                                | Client<br>Fredo          |            |                          |        |                      |                                      |       | Equ    | iipme                                               | nt            | Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |





|                         |                      | 100                        | · partiti                                  |              |
|-------------------------|----------------------|----------------------------|--------------------------------------------|--------------|
| Location Heyford P      | ark, Oxfordshire     |                            |                                            | BOREHOLE No  |
| Job No<br>RT/11/52204   | Date <b>05-05-11</b> | Ground Level (m)<br>121.32 | Co-ordinates ()<br>E 452,242.8 N 226,132.9 | BH219        |
| Client<br>Waterman Ener | gy, Environment and  | Design Ltd                 |                                            | Sheet 2 of 2 |

|              |                                                   |                                  |                   | CORE REC                 | 1                        |            | 1       | ¢Τ.               | EST               | S     |                                       |                                                 | (S;                                   | STRATA                                                                                                                                                                                                                                                                 |  |  |
|--------------|---------------------------------------------------|----------------------------------|-------------------|--------------------------|--------------------------|------------|---------|-------------------|-------------------|-------|---------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Drogress     | Casing<br>depth/size                              | Water<br>level/<br>time/<br>date | Flush<br>Return % | Depth (m)<br>AL/ from to | Total core<br>Recovery % | Solid core | 48.Q.D. | Fracture<br>Depth | Fracture<br>Index | Tests | Legend                                | Heduced<br>1163<br>1941<br>1951<br>1971<br>1971 | Depth<br>G (Thickness)<br>(m)         | Description                                                                                                                                                                                                                                                            |  |  |
|              |                                                   | date                             | -                 | 5.00-8.00                | 73                       | 66         | 44      | 5.00              | NI 2.6            |       |                                       |                                                 |                                       | Very strong light grey crystalline fine grained calcaceous LIMESTONE. Frequent recrystallised shell fragments. Fresh.  Fractures closely spaced, sub horizontal, undulating rough, and open with up to 1.5mm grey silty day infill.                                    |  |  |
|              |                                                   |                                  | -                 |                          |                          |            |         | 7.00              | 0<br>0<br>No rec  |       | × × × × × × × × × × × × × × × × × × × |                                                 | (0.40)                                | Weak thinly laminated dark grey fine grained argillaceous SILTSTONE. Highly weathered throughout with light grey silty sand weathering products. Unfractured insitu.  Very strong light grey crystalline fine grained calcaceous LIMESTONE. Fresh. Unfractured insitu. |  |  |
|              |                                                   |                                  |                   | 8.00-10.00               | 100                      | 88         | 88      | 8.40<br>8.51      | 0 NI 2.8          |       |                                       | +112.9                                          |                                       | Weak, thinly laminated, slightly greenish grey slightly calcaceous fine grained argillaceous MUDSTONE. Fissile. Generally highly weathered but locally completely weathered where recovered as stiff grey slightly sandy                                               |  |  |
|              |                                                   |                                  | -                 | -<br>-<br>-<br>-<br>-    |                          |            |         | 9.23              | 23.5              |       | x x x                                 |                                                 | (1.00)                                | clay.  8.51-9.23m - Fractures medium spaced, sub horizontal, planar smooth and tight. Clean.  9.23-9.40m - Fractures extremely closely spaced, stepped rough and tight with light grey clayey sand coatings.                                                           |  |  |
|              |                                                   |                                  | -                 | -<br>-<br>-<br>-         |                          |            |         | 9.70              | 3.3               |       | × × × × × × × × × × × × × × × × × × × | -                                               | (0.30)<br>2 9.70<br>(0.30)<br>2 10.00 | SILTSTONE. Fresh. Unfractured insitu.  Strong grey crystallline fine grained calcaceous LIMESTONE. Generally fresh with slight greenish grey penetrative discolouration. Fractures sub horizontal, stepped, rough and tight. Clean.                                    |  |  |
| Rota<br>Rota | RKS<br>d excav<br>ary oper<br>ary Cori<br>hing me | Hole (                           | ).5m<br>1-101     | -2.0m<br>n.              |                          |            |         |                   |                   |       |                                       |                                                 |                                       |                                                                                                                                                                                                                                                                        |  |  |
| l dim        | ensions                                           | in metr                          | es                | Client<br>Fredo          |                          |            | _       |                   |                   |       | Equ                                   | ıipme                                           | nt                                    | Comacchio 450-P Logged By Edward Lodge                                                                                                                                                                                                                                 |  |  |

| ΟĮ       | All dimensions in metres | Client           | Equipment       | Logged By    |
|----------|--------------------------|------------------|-----------------|--------------|
| шI       | 0 1 1 22 2               | Freddie Alcock   | Comacchio 450-P | Edward Lodge |
| <u>ග</u> | Scale 1:32.3             | 1 Teddie 7 Heoek | Comacemo 150 1  | Edward Lodge |



| Hydrock records (2014) Extract of unreferenced SLR report |
|-----------------------------------------------------------|
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |

Appendix A Borehole Logs

|                             | 1            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH101 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>113.60mATBM | Co-ordinates:<br>E 453,868 N 225,832 | SLR -                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 3     |

| SAMPLE   | S & 7      | rest  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |        |                          |        | STRA         | ATA        |           |          | N-m-       |                         |
|----------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------|--------------------------|--------|--------------|------------|-----------|----------|------------|-------------------------|
| Depth    | Type<br>No |       | Test<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water        | Reduced<br>Level | Legend | Dept<br>(Thick-<br>ness) | h      |              | DESC       | RIPTION   |          |            | Instrument/<br>Backfill |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 113.40           | 41. 41 | - 0.2                    | 0 TOPS |              |            |           |          |            |                         |
|          |            |       | po.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |        | ŧ                        | Yello  | w buff LIN   | ESTONE     |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            |                  |        | <u> </u>                 |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | -                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | 1      | ‡                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                  | 开      | ‡                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | 庄      | 1                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | ŧ                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1                |        | 1                        |        |              |            |           |          |            |                         |
|          |            |       | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  | 井      | ‡                        |        |              |            |           |          |            |                         |
| 3        |            | C.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Ì                | 田      | (5.80)                   | )      |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | <u> </u>                 |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10<br>20         | 田      | <u> </u>                 |        |              |            |           |          |            |                         |
| 1        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                  | 占      |                          |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | d.                       |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | 댴                        | 1      |              |            |           |          |            |                         |
| 5        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>2       |                  |        | Ŧ                        |        |              |            |           |          |            |                         |
|          |            | į.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | 咠                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 107.0            | 50     | 主 ,                      | 5.00   |              |            |           |          |            |                         |
| 6        |            |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ì            | 107.             |        |                          | So     | ft, dark gre | y sandy CL | AY        |          |            |                         |
|          |            | ř     | a de la companya de l | 1            |                  |        | (0.9                     | 0)     |              |            |           |          |            |                         |
|          |            |       | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 106.             | 70 ==  | =                        | 6.90   | <del></del>  | IMESTON    | TC 4 MI   | IDSTON   | FS         |                         |
| -7       |            | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | F      | #                        | Int    | erbedded i   | IMESTON    | ES and MC | DSTON    | Lo         |                         |
|          | d          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | ₹                        |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        | 耳                        |        |              |            |           |          |            |                         |
| Boring P | rogress    | and W | ater Obse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rvations     | 1 (              | Casing | 1                        |        | Chiselling   |            | Water     | Added    | Gene       | ral Remarks             |
| Date     | Tim        |       | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water<br>Dpt |                  |        | . mm                     | From   | То           | Hours      | From      | То       |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        |                          |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        |                          |        |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        |                          | ¥      |              |            |           |          |            |                         |
|          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |        |                          |        |              |            |           |          |            |                         |
| All dir  |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | tor: Site        |        |                          | M      |              |            | 1         | <u> </u> | Logged By: | Approved B              |

|                               | 1            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH101 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>113.60mATBM | Co-ordinates:<br>E 453,868 N 225,832 | SLR &                |
| Project: Ardley Landfill S    | Site Monitor | ing Borchole Installations   |                                      | Sheet:<br>2 of 3     |

| AMPLE     | 5 & 7               | FST      | S                 |              |                  |           |                  |        | STRA                     | ATA     |            |           |             | ent/        |
|-----------|---------------------|----------|-------------------|--------------|------------------|-----------|------------------|--------|--------------------------|---------|------------|-----------|-------------|-------------|
| Depth     | Type                |          | Test              | Water        | Reduced<br>Level | Legend    | Depth<br>(Thick- |        |                          |         | RIPTION    |           |             | Instrument/ |
|           | No                  | Туре     | Result            |              |                  |           | (3.60)           | Intert | bedded LIM               | ESTONES | and MUDS   | STONES (  | (continued) |             |
| 0         |                     |          |                   |              | 103.10           |           | 10.50            | Dark   | k grey MUI               | OSTONE  |            |           |             |             |
| 1         |                     |          |                   |              | 101.8            | 0         | (1.30)           | 0 Crif | f Sandy CL               | AV      |            |           |             |             |
| 12        |                     |          |                   |              | 100.7            |           | 1.1.10)<br>      | 00     |                          |         |            |           |             |             |
| 13        |                     |          |                   |              | 99.8             | 0         | (0.60)           | Dai    | rd dark LIM rk grey sand | dy CLAY | nterbedded | with hard | dark grey   | 29          |
| 15        |                     |          |                   |              |                  |           |                  |        | MESTONE                  |         |            |           |             |             |
|           |                     | <u> </u> |                   |              | <del> </del>     |           | ==               |        | Chiselling               |         | Water      | Added     | Gener       | al Remarks  |
| Boring Pr | rogress             |          | ater Obs<br>Depth | Water<br>Dpt |                  | Casing    | . mm   1         | rom    | To                       | Hours   | From       | То        | 1           |             |
| Date      | 1 little            |          | <b>Уери</b> і     | Dpt          | Бери             | , Did     |                  |        |                          |         |            |           |             |             |
| All din   | nension:<br>Scale 1 |          | tres              | Contrac      | tor: Site        | Investiga | ntion            | Me     | ethod:                   |         | <u></u>    |           | Logged By:  | Approved B  |

|                               | I     | BOREHOLE LOG     |                     | BOREHOLE No<br>BH101 |
|-------------------------------|-------|------------------|---------------------|----------------------|
| Client: Viridor Waste Ma      |       | Ground Level:    | Co-ordinates:       | CLD                  |
| Project No:<br>403.0035.00174 | Date: | 113.60mATBM      | E 453,868 N 225,832 | SLK ဳ                |
| Project: Ardley Landfill S    |       | Sheet:<br>3 of 3 |                     |                      |

| Ar                       | dley L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andf         | ill Sit       | e Moi            | nito         | oring B            | oreho          | le Ir | nstall              | atio | ns                    |                      |            |              |            | 3 of 3  |                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------------|--------------|--------------------|----------------|-------|---------------------|------|-----------------------|----------------------|------------|--------------|------------|---------|-------------------------|
| SAMPL                    | ES &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEST         | S             |                  |              |                    |                |       |                     |      | STR                   | ATA                  |            | ***          | 2.5        |         | l lent/                 |
| Depth                    | Type<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test<br>Type | Test<br>Resul | it               | Water        | Reduced<br>Level   | Legend         | (Thi  | Depth<br>ick-<br>s) |      |                       | DES                  | CRIPTION   | ł            |            |         | Instrument/<br>Backfill |
| -17<br>-18<br>-19<br>-20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              | 91.6               |                |       | .20)                | LIM  | cgrey MUI<br>ESTONE ( | OSTONE in continued) | nterbedded | with hard    | dark grey  |         |                         |
| -22                      | a de la companya de l |              |               |                  |              | 71.0               |                | į     | 22.00               |      |                       | Bore                 | hole comp  | lete at 22.0 | 00m        |         |                         |
| -23                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              |                    |                |       |                     |      |                       |                      |            |              |            |         |                         |
|                          | ring Progress and Water Observat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | servatio      | ons              | Casing       |                    |                |       | Chiselling          |      | Water                 | Added                | Gene       | ral Remark   | 'S         |         |                         |
|                          | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _            | epth          | Wat<br>Dp        | er           | Depth              | Dia.           | ınm   | Fre                 | om   | То                    | Hours                | From       | То           |            |         |                         |
| Date All dim             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                  |              |                    |                |       |                     |      |                       |                      |            |              |            | =       |                         |
| All dim                  | ensions<br>Scale 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | res           | Contra<br>Plant: | actor<br>Mas | sen <b>Serv</b> ic | vestigat<br>¢s | ion   |                     | Me   | thod:                 |                      |            |              | Logged By: | Approve | d By:                   |

|                             |                  | BOREHOLE No BH102            |                                      |     |
|-----------------------------|------------------|------------------------------|--------------------------------------|-----|
| Client:<br>Viridor Waste Ma | nagement         | A C                          | 109000                               |     |
| Project No: 403.0036.00174  | Date:            | Ground Level:<br>114.88mATBM | Co-ordinates:<br>E 453,845 N 225,754 | SLR |
| Project: Ardley Landfill S  | Sheet:<br>1 of 2 |                              |                                      |     |

|                |                     |              |              |                 |       | -                |                 | 2010                    |          |               |              |              |             |              | 01 2       |                         |
|----------------|---------------------|--------------|--------------|-----------------|-------|------------------|-----------------|-------------------------|----------|---------------|--------------|--------------|-------------|--------------|------------|-------------------------|
| SAMPL          | ES &                | TEST         | 'S           |                 |       |                  |                 |                         |          | STR           | ATA          |              |             |              |            | ent/                    |
| Depth          | Type<br>No          | Test<br>Type | Tes<br>Resu  | t<br>ılt        | Water | Reduced<br>Level | Legend          | Dep<br>(Thick-<br>ness) | th       |               | DES          | SCRIPTIO     | N           |              |            | Instrument/<br>Backfill |
|                |                     | State -      |              | 099.00          | -     | 114.50           | 34 34           |                         | So       | ft, Orange/B  | rown, Slig   | htly Clayey  | SAND (T     | OPSOIL)      |            |                         |
|                | 1                   |              |              |                 |       | 114.58           | 111             | <del>\</del>            | M        | oderately str | ong, very p  | ale brown/   | yellow ooli | tic LIMESTO  | NE.        |                         |
|                |                     |              |              | 8               |       |                  |                 | ‡                       |          |               |              |              |             |              |            |                         |
| : .            |                     | ļ            |              |                 |       |                  | 井               | <u> </u>                |          |               |              |              |             |              |            |                         |
| -1             |                     |              |              |                 |       |                  | 中               | ‡                       |          |               |              |              |             |              |            |                         |
|                |                     | 1            |              |                 |       | 113.38           | 무               | 1.                      | 50       |               |              | 1.1          |             | - LIMESTO    | NTE:       |                         |
|                | 6                   |              |              |                 |       |                  | H               | ₹                       | M        | oderately we  | ak, very pa  | ue browny    | ellow ootit | ic LIMESTO   | NE.        | 6 5                     |
| -2             |                     |              |              |                 | è     | ļ                | H               | (0.90)                  |          |               |              |              |             |              |            |                         |
| Ę              |                     | ļ            | it .         |                 |       | 112.48           |                 | 2.                      | 40       |               |              |              |             |              |            |                         |
|                |                     |              |              |                 | 12    | 100000000        |                 | ‡                       | М        | oderately str | ong, very p  | ale brown/   | yellow ooli | itic LIMESTO | NE.        | 8 8                     |
| Ē              |                     | ĺ            |              |                 |       | 1                |                 | <u> </u>                |          |               |              |              |             |              | 30         |                         |
| <u>-</u> з     |                     | 1            |              |                 |       |                  |                 | F <sub>(1.60)</sub>     |          |               |              |              |             |              |            |                         |
| į.             | 1                   |              |              |                 |       | 1                |                 | <b>†</b> ````           |          |               |              |              |             |              |            |                         |
| F              |                     | ľ            |              |                 |       |                  | 玉               | }                       |          |               |              |              |             |              | Y          |                         |
| <b>E</b> _4    |                     |              |              |                 | }     | 110.88           | 3               | 4.                      | 00       | trong, very p | ala bassan/s | vallany agli | ia I IMEST  | TONE         |            |                         |
|                |                     |              | v <b>k</b> e |                 | Ì     |                  | H               | ‡                       | 31       | rong, very p  | ale browny   | yellow boll  | uc Livies   | IONE.        |            |                         |
| Ė              |                     |              |              |                 | ĺ     |                  |                 | <del>]</del>            |          |               |              |              |             |              |            |                         |
|                | 1                   |              | 10           |                 |       |                  | 山               | ‡                       |          |               |              |              |             |              |            | 目:                      |
| -5             |                     |              |              |                 |       |                  | 井               | ŧ                       | 4        |               |              |              |             |              |            |                         |
| Ę              | 3                   |              |              |                 |       |                  | 中               | Ŧ,,,,                   |          |               |              |              |             |              |            |                         |
|                |                     |              |              |                 | 1     |                  | 丑               | (3.00                   | '        |               |              |              |             |              |            |                         |
| -6             | 8                   |              |              |                 |       |                  | 出               | =                       |          |               |              |              |             |              |            |                         |
| Ē              |                     |              |              |                 |       |                  | 井               | ‡                       |          |               |              |              |             |              |            | 1目                      |
|                |                     |              |              |                 |       |                  |                 | ‡                       | Ñ        |               |              |              |             |              |            |                         |
|                |                     |              |              |                 |       | 107.0            |                 | } ,                     | 00       |               |              |              |             |              |            | 目目                      |
| F 7            |                     | 1            |              |                 |       | 107.88           |                 | - Carlotte              | .00<br>S | oft, dark gre | y, sandy Cl  | LAY.         |             |              |            | 1目                      |
| ĬĘ.            |                     | ļ            |              |                 |       | 107.4            | 8 =             | (0.40                   | .40      | oft, dark gre | MI IDET      | ONE          |             |              |            | 4 目                     |
|                |                     | 1            |              |                 |       |                  |                 | (0.50                   | )        | on, dark gre  | y MODS I     | ONE          |             |              |            |                         |
| <u> </u>       |                     |              |              |                 |       | 106.9            | 8               | 7                       | .90      |               |              |              |             |              |            |                         |
| Boring Pro     |                     |              |              |                 |       | -                | sing            | $\perp \!\!\! \perp$    | 21/2     | Chiselling    |              |              | Added       | Gene         | ral Remark | is                      |
| Date           | Time                | D            | epth         | Wa'<br>Dr       | ot    | Depth            | Dia. 1          | mm                      | From     | То            | Hours        | From         | То          | 4            |            |                         |
|                |                     |              |              |                 |       |                  |                 |                         |          | 1             |              |              |             | 1            |            |                         |
|                |                     | į.           |              |                 |       |                  |                 |                         |          | · ·           |              |              |             |              |            |                         |
|                |                     |              |              | 1               |       |                  |                 |                         |          |               |              |              |             |              |            |                         |
| 5              |                     |              |              |                 |       |                  |                 |                         |          |               |              |              |             |              |            |                         |
| Date  All dime |                     |              |              |                 |       | 20.112           |                 |                         |          | 1             | ī.           |              | <u> </u>    |              |            |                         |
| All dime       | ensions<br>cale 1:5 |              | es           | Contr<br>Plant: |       | : Site In        | vestigati<br>es | on                      | M        | ethod:        |              |              |             | Logged By:   | Approve    | d By:                   |

|                             | BOREHOLE No<br>BH102 |                              |                                      |     |
|-----------------------------|----------------------|------------------------------|--------------------------------------|-----|
| Client:<br>Viridor Waste Ma | inagement            |                              |                                      |     |
| Project No: 403.0036.00174  | Date:                | Ground Level:<br>114.88mATBM | Co-ordinates:<br>E 453,845 N 225,754 | SLR |
| Project: Ardley Landfill S  |                      | Sheet:<br>2 of 2             |                                      |     |

|                           |            |              |                | JIII        | n mg D           | orehole I                                         | nstan                |                                     |         |              |              |                | of 2        |
|---------------------------|------------|--------------|----------------|-------------|------------------|---------------------------------------------------|----------------------|-------------------------------------|---------|--------------|--------------|----------------|-------------|
| SAMPLE                    | S & '      | <b>FEST</b>  | S              | b           |                  |                                                   |                      | STR                                 | ATA     |              |              |                | n           |
| Depth                     | Type<br>No | Test<br>Type | Test<br>Result | Water       | Reduced<br>Level | Legend (Th                                        | Depth<br>lick-<br>s) |                                     |         | CRIPTION     |              |                | Instrument  |
| 9                         |            |              |                |             |                  | 02                                                | .60)                 | Weak, dark gre<br>(continued)       | y MUDST | ONE, with    | occasiona    | l limestone ba | nds.        |
| 10                        |            |              |                |             | 104.38           |                                                   | 10.50                |                                     |         |              |              | ** 10          |             |
| -11                       |            |              |                |             | 103.58           |                                                   | ).80)<br>11.30       | Strong, dark gr<br>Stiff, dark grey | 00 100  | TV45_ 61 200 | ******       |                |             |
| -12                       |            |              |                |             | 102.38           |                                                   | 1.20)                | 50 700                              |         |              |              |                |             |
| -13                       |            |              |                |             | 101.8            | <del>                                      </del> | 0.50)<br>13.00       | Strong, grey L                      |         |              | occasion     | al clayey sand | bands.      |
| -14                       |            |              |                |             |                  |                                                   | 2.00)                |                                     |         |              |              |                |             |
| -15                       |            |              |                |             | 99.8             | 8                                                 | 15.00                |                                     | Bore    | ehole comp   | lete at 15.0 | 00m            |             |
| Boring Pro                | gress a    | nd Wat       | er Observat    |             | Ca               | l l                                               |                      | Chiselling                          |         | Water        | Added        | Gene           | ral Remarks |
| Date                      | Time       | De           | epth W         | ater<br>)pt | Depth            | Dia. mm                                           | Fro                  | m To                                | Hours   | From         | То           |                |             |
| Boring Pro Date  All dime | nsions     |              | es Cont        |             | : Site In        | vestigation<br>es                                 |                      | Method:                             |         |              |              | Logged By:     | Approved E  |

|                             | 1            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH103 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>114.37mATBM | Co-ordinates:<br>E 453,835 N 225,703 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| SAMPL             | FS & '               | TEST   | 8       | <del>-</del>       | 1                       |                   |                                |       | STR         | ATA         |              | 300       |            | nt/         |
|-------------------|----------------------|--------|---------|--------------------|-------------------------|-------------------|--------------------------------|-------|-------------|-------------|--------------|-----------|------------|-------------|
| Depth             | Type<br>No           |        | Test    | Water              | Reduced<br>Level        | Legend (Ti        | Depth<br>nick-                 |       |             |             | SCRIPTION    | N         |            | Instrument  |
|                   |                      |        |         | _                  | 114.03                  | 34 34             | 0.30                           | Soft, | orange/br   | own sandy   | CLAY (TO     | OPSOIL).  |            |             |
| 1                 |                      |        |         |                    | 114.0                   |                   | 2.20)                          | Stron | ng, very pa | ale brown/y | ellow ooliti | ic LIMES  | TÖNE.      |             |
| 2                 |                      |        |         |                    | 111.8                   |                   | 2.50                           |       |             |             |              |           |            |             |
| -3                |                      |        |         |                    | 110.9                   |                   | 0.90)<br>3.40                  | 59    |             |             |              |           | IMESTONE.  | 1           |
| -4                |                      |        |         |                    | 110.5                   |                   | 5.10                           | Stroi | ng, very p  | ale brown/y | yellow oolit | tic LIMES | TONE.      |             |
| 5                 |                      |        |         |                    |                         |                   | 2.90)                          |       |             |             |              |           |            |             |
| F°                |                      |        |         |                    | 108.0<br>107.8          |                   | 6.30                           | Ver   |             | resh grey L |              | Œ.        |            |             |
| -7                |                      |        |         |                    | 107.3                   |                   | 0.50)<br>7.00                  |       |             | andy CLAY   |              |           |            |             |
|                   |                      |        |         |                    | 106.8                   | 7                 | 0.50)<br>7.50<br>0.40)<br>7.90 | Sten  |             | IMESTON     |              |           |            |             |
|                   | Opress a             | nd Wat | er Obse | ryations           |                         | asing             | 1                              |       | Chiselling  |             | Water        | Added     | Gener      | ral Remarks |
| Date              | Time                 |        | epth    | Water<br>Dpt       | Depth                   | Dia. mm           | Fro                            |       | То          | Hours       | From         | То        |            |             |
| Boring Pr<br>Date |                      |        |         |                    |                         |                   |                                |       |             |             |              |           |            |             |
| All dim           | ensions<br>Scale 1:5 |        |         | Contract<br>Plant: | or : Site In<br>Service | vestigation<br>es | *********                      | Meth  | nod:        |             |              |           | Logged By: | Approved By |

|                             | 3            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH103 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              | - Jan 1972                           |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>114.37mATBM | Co-ordinates:<br>E 453,835 N 225,703 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

| Project:<br>Ar            | dley L    | andf         | ill Si      | te Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nite  | oring B                                                            | orehol      | e Insta                   | llatio | ons                           | ani - a |            |             |      |             | 2 of 2     |                     |
|---------------------------|-----------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|-------------|---------------------------|--------|-------------------------------|---------|------------|-------------|------|-------------|------------|---------------------|
| SAMPL                     | ES & '    | TEST         | S           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    |             |                           |        | STF                           | ATA     |            |             |      | Vieta       |            | /ue                 |
| Depth                     | 1         | Test<br>Type | Tes<br>Resu | t<br>ılt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water | Reduced<br>Level                                                   | Legend      | Depth<br>(Thick-<br>ness) |        |                               | DE      | SCRIPTIO   |             |      |             |            | Instrume            |
| -9                        |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00  | 105.37                                                             |             | (1.10)<br>9.00            | bau    | oderately str<br>nds. (contin | ued)    | AUDSTON    |             | 3    | ional limes | stone      | Instrument Backfill |
| -10<br>-10                |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    |             |                           |        |                               | Бой     | choic comp | icic at 3.0 | OIII |             |            |                     |
|                           |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    |             |                           |        |                               |         |            |             |      |             |            |                     |
| -11<br>-11                |           | N.           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |             |                           |        |                               |         |            |             |      |             |            |                     |
| 12                        |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    |             |                           |        |                               |         |            |             |      |             |            |                     |
| -13                       |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Č     |                                                                    |             |                           |        |                               |         |            |             |      |             |            |                     |
| -<br>-14<br>-             |           |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                    |             |                           |        |                               |         |            |             |      |             |            |                     |
| -15                       |           |              |             | Joint Control of the |       |                                                                    |             |                           |        |                               |         |            |             |      |             |            |                     |
| Boring Pro                | ogress ar | nd Wat       | er Ob       | servation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns    | Ca                                                                 | sing        |                           |        | Chiselling                    |         | Water      | Added       |      | Gener       | ral Remark | cs                  |
| Boring Pro Date  All dime | Time      | De           | epth        | Wate<br>Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er    | Depth                                                              | Dia. π      | nm Fr                     | om     | То                            | Hours   | From       | То          |      |             |            |                     |
| All dime                  | nsions i  |              | es          | Contra<br>Plant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctor  | : Site Inv                                                         | estigations | on II                     | Me     | ethod:                        | <u></u> |            |             | Log  | gged By:    | Approve    | d By:               |

| 7                           | I            | BOREHOLE LOG                 | 19                                   | BOREHOLE No<br>BH104 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>113.98mATBM | Co-ordinates:<br>E 453,825 N 225,655 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| SAMPL        | ES &                   | TESTS | 3              |           |                           |             |                                |     | STR                                                   | ATA          |                                         |            |              | Jus /        |          |
|--------------|------------------------|-------|----------------|-----------|---------------------------|-------------|--------------------------------|-----|-------------------------------------------------------|--------------|-----------------------------------------|------------|--------------|--------------|----------|
| Depth        | Type<br>No             | ГТ    | Test<br>Result | Water     | Reduced<br>Level          | Legend (    | Depth<br>Thick-<br>ness)       |     |                                                       | DES          | SCRIPTIO                                | N          |              | Instrument/  | Backfill |
| -1           |                        |       |                |           | 113.48                    |             | (0.50)<br>0.50<br>(1.50)       |     | t, orange/br                                          |              |                                         | yellow ool | itic LIMESTO |              |          |
| -3           |                        |       |                |           | 111.98                    |             | 2.00                           | Str |                                                       |              |                                         |            | MESTONE.     |              |          |
| -5           |                        |       |                |           | 108.98                    |             | (1.00)                         | Ve  | ry weathers                                           |              |                                         |            | MESTONE.     |              |          |
| 6            |                        |       |                |           | 108.6                     |             | 5.30                           | We  | eathered, w                                           | eak, light b | rown sandy                              | y LIMEST   |              | DNE.         |          |
| -7           |                        |       |                | 7.0       | 107.10<br>106.90<br>106.4 | 8<br>       | 6.80<br>7.00<br>(0.50)<br>7.50 | Sti | eathered, w<br>iff, grey silt<br>oderately st<br>nds. | y/sandy CL   | AY.                                     |            | ONE.         | stone        |          |
|              | VII. 2                 |       | r Observati    |           |                           | sing        |                                |     | Chiselling                                            |              |                                         | Added      | Gener        | al Remarks   |          |
| Date All dim | Time                   | Dep   | pth Wa         | ier<br>ot | Depth                     | Dia. mr     | m Fro                          | om  | То                                                    | Hours        | From                                    | То         |              |              |          |
| All dim      | ensions i<br>Scale 1:5 |       | s Contr        |           | : Site In                 | vestigation | 1                              | Me  | thod:                                                 |              | *************************************** |            | Logged By:   | Approved By: | y:       |

|                               | 1            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH104 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>113.98mATBM | Co-ordinates:<br>E 453,825 N 225,655 | SLR J                |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   | 1                                    | Sheet:<br>2 of 2     |

| Ai                | uicj 2               |        |              | ic mon.            |                         |           |                           | Mariente | A 121 400                    |                     |                |             |                | 01 2       |                                        |
|-------------------|----------------------|--------|--------------|--------------------|-------------------------|-----------|---------------------------|----------|------------------------------|---------------------|----------------|-------------|----------------|------------|----------------------------------------|
| SAMPL             | ES &                 | TEST   | S            | Π.                 |                         |           |                           |          | STR                          | ATA                 |                |             |                |            | ent/                                   |
| Depth             | Type<br>No           |        | Test<br>Resu | ı A                | Reduced<br>Level        | Legend    | Depth<br>(Thick-<br>ness) |          |                              |                     | SCRIPTION      |             |                |            | Instrum<br>Backfill                    |
| -9                |                      |        |              |                    |                         |           | (4.00)                    | Mod ban  | derately str<br>ds. (continu | ong, grey M<br>ued) | <b>TUDSTON</b> | E, with oc  | casional limes | tone       | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
| -10               |                      |        |              |                    |                         |           |                           |          |                              |                     |                |             |                |            |                                        |
| -11               |                      |        |              |                    | 102.4                   | 3         | 11.50                     |          | 500-000-                     |                     |                |             |                |            |                                        |
| 12                |                      |        |              |                    |                         |           |                           |          |                              | Bore                | hole compl     | ete at 11.5 | 60m            |            |                                        |
| -13               |                      |        |              |                    |                         |           |                           |          |                              |                     |                |             |                |            |                                        |
| -14               |                      |        |              |                    |                         |           |                           |          |                              |                     |                |             |                |            |                                        |
| -15               |                      |        |              |                    |                         |           |                           |          |                              |                     |                |             |                |            |                                        |
| Boring Pr         | ogress a             | nd Wat | er Ob        | servations         | C                       | asing     |                           |          | Chiselling                   |                     | Water          | Added       | Gene           | ral Remark | cs                                     |
| Boring Pr<br>Date | Time                 |        | epth         | Water<br>Dpt       | Depth                   | Dia. r    | nm Fr                     | om       | То                           | Hours               | From           | То          |                |            |                                        |
| All dim           | ensions<br>Scale 1:5 |        | es           | Contract<br>Plant: | or : Site In<br>Service | vestigati | on I                      | Me       | thod:                        |                     |                |             | Logged By:     | Approve    | d By:                                  |

|                            | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH105 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>113.46mATBM | Co-ordinates:<br>E 453,815 N 225,606 |                      |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |
|                            |              |                              |                                      | IŞ                   |

| Arc        | iley L              | andf         | ill Si       | te Mor           | nito   | oring B              | orehol          | le Ins                | tallatio             | ns                          | _                       |            |               | 1              | of 2                                                |
|------------|---------------------|--------------|--------------|------------------|--------|----------------------|-----------------|-----------------------|----------------------|-----------------------------|-------------------------|------------|---------------|----------------|-----------------------------------------------------|
| SAMPLE     | ES &                | TEST         | S            |                  |        |                      |                 |                       |                      | STR                         | ATA                     |            |               |                | ent                                                 |
| Depth      | Type<br>No          | Test<br>Type | Test<br>Resu | t<br>lt          | Water  | Reduced<br>Level     | Legend          | De<br>(Thick<br>ness) | epth<br>k-           |                             | DES                     | SCRIPTION  | N             |                | Instrument/                                         |
|            |                     |              |              |                  |        |                      | П               | ŧ                     | We                   | ak, weather                 | ed, light bro           | own sandy  | LIMESTO       | NE.            |                                                     |
|            |                     | i            |              |                  | 8      |                      |                 | (0.70                 | 0)                   |                             |                         |            |               |                |                                                     |
|            |                     |              |              |                  |        | 112.76               | ++              | + (                   | 0.70                 | ng ven/n                    | ale brown a             | nd vellow  | volitic I IIV | <b>FSTONE</b>  | <del>- 4</del>                                      |
| -1         | 8                   |              |              |                  | 3      |                      |                 | <u> </u>              | 340                  | ng, very p                  | ac brown a              | na yenow   | John Day      | 20.01.12.      |                                                     |
|            | 1                   | Ì            |              | î                |        | 1                    |                 | }                     |                      |                             |                         |            |               |                |                                                     |
|            |                     |              |              | ļ                | 9      |                      |                 | (1.80                 | 0)                   |                             |                         |            |               |                |                                                     |
|            |                     |              |              | 1                |        |                      | 中               | ‡`                    |                      |                             |                         |            |               |                |                                                     |
| -2         |                     |              | į.           |                  |        |                      |                 | }                     | 1                    |                             |                         |            |               |                | 1                                                   |
|            |                     |              |              | - 1              |        | 110.96               |                 | <u> </u>              | 2.50                 |                             |                         |            |               |                |                                                     |
|            |                     |              |              | 1                |        |                      |                 | ‡ _                   | Mo                   | derately str                | ong, very p             | ale brown/ | yellow ool    | itic LIMESTO   | ONE.                                                |
| :<br>-3    | 1                   |              |              | 9                |        |                      |                 | <del>[</del> (1.0     | 0)                   |                             |                         |            |               |                |                                                     |
|            |                     |              |              |                  |        | 2000                 |                 | ‡                     |                      |                             |                         |            |               |                |                                                     |
| -          | ľ                   |              |              |                  |        | 109.96               |                 | J                     | 3.50 Str             | ong, very p                 | ale brown a             | and yellow | oolitic LIN   | ÆSTONE.        |                                                     |
|            |                     | 1            |              |                  |        | 109.46               |                 |                       | 3.80<br>4.00 Mo      | derately st                 | rong, very p            | ale brown  | yellow oo     | litic LIMESTO  | ONE.                                                |
| -4         |                     |              |              |                  |        | 103.40               |                 | -                     | Str                  | ong, very p                 | ale brown a             | and yellow | oolitic LIN   | MESTONE.       |                                                     |
|            |                     |              |              | - 1              |        |                      |                 | ]<br>                 | 10)                  |                             |                         |            |               |                |                                                     |
|            |                     | 1            |              | 1                |        |                      |                 | ‡```                  | ,                    |                             |                         |            |               |                |                                                     |
| -5         | į.                  |              |              |                  |        | 108.46               |                 | ‡                     | 5.00 M               | nderately st                | rong, very r            | pale brown | vellow oo     | litic LIMESTO  | ONE.                                                |
|            |                     |              |              |                  |        |                      |                 | ]<br>(0.7             | - 1                  | out all of                  | , ,                     |            | ,             |                | 9                                                   |
| Ę          |                     |              |              |                  |        | 107.70               |                 | -                     | 5.70                 |                             |                         | 4 e        |               | W-1            |                                                     |
| Ē_         |                     |              |              |                  |        |                      | H               | -                     | Str                  | ong, very p                 | ale brown               | and yellow | oolitic LI    | MESTONE.       |                                                     |
| -6         |                     |              |              |                  |        | 1                    |                 | <b>F</b> (0.8         | 30)                  |                             |                         |            |               |                |                                                     |
|            | 1                   |              |              |                  |        | 106.9                | 6               | =                     | 6.50                 | C                           | trate and t             | DATECTON   | TC .          |                | 00 <u>180                                      </u> |
|            | 1                   |              | 36           |                  |        | 106.6                | 6 1             | <u> </u>              | 6.80                 |                             | light grey L            |            | (E.           |                |                                                     |
| 7          |                     |              | 2363         |                  |        | 106.5                |                 | *                     | 6.90 Fir<br>7.20 Sti | m, brown s<br>iff, dark gre | andy CLA<br>y silty CLA | Υ.<br>ĀŸ.  |               |                |                                                     |
| ŧ          |                     |              |              |                  |        | 100.2                | 9 A A 7         |                       | M                    | oderately st                | rong, gey s             | ilty MUDS  | TONE, wi      | ith occasional | limestone                                           |
| Ė          |                     |              | 1            |                  |        |                      |                 |                       | l va                 | nus.                        |                         |            |               |                |                                                     |
| <u> </u>   |                     |              | <u> </u>     |                  |        |                      |                 | <u> </u>              |                      |                             |                         |            |               |                |                                                     |
| Boring Pro | ogress a            | nd Wa        | ter Ob       |                  |        | C                    | sing            |                       |                      | Chiselling                  |                         | Water      | Added         | Gene           | ral Remarks                                         |
| Date       | Time                | D            | epth         | Wate<br>Dpt      | т<br>— | Depth                | Dia. r          | mm                    | From                 | То                          | Hours                   | From       | To            | 4              |                                                     |
|            |                     | 111          |              |                  | -      |                      |                 |                       |                      |                             |                         |            |               |                |                                                     |
|            |                     |              |              |                  |        |                      |                 |                       |                      |                             |                         |            |               |                |                                                     |
| Boring Pro |                     |              |              |                  |        |                      |                 |                       |                      |                             |                         |            |               |                |                                                     |
|            |                     | 0.           |              |                  |        |                      |                 |                       |                      |                             | *                       |            |               |                |                                                     |
|            |                     |              |              |                  |        |                      |                 |                       |                      |                             |                         |            |               |                |                                                     |
| All dime   | ensions<br>icale 1: |              | es           | Contra<br>Plant: | ctor   | : Site In<br>Service | vestigati<br>es | ion                   | Me                   | thod:                       |                         |            |               | Logged By:     | Approved By                                         |

|                             | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH105 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>113.46mATBM | Co-ordinates:<br>E 453,815 N 225,606 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

| SAMPLE     | ES &       | TEST | S              | L            |                  |             |                      | STR                            | ATA                  | 25 1185     |             |                 |            | ent        |
|------------|------------|------|----------------|--------------|------------------|-------------|----------------------|--------------------------------|----------------------|-------------|-------------|-----------------|------------|------------|
| Depth      | Type<br>No |      | Test<br>Result | Water        | Reduced<br>Level | Legend (Th  | Depth<br>nick-<br>s) |                                |                      | SCRIPTION   |             |                 |            | Instrument |
| 9          |            |      |                |              | 100.64           |             | .60)                 | Moderately strobands. (continu | ong, gey sil<br>led) | ty MUDST    | ONE, with   | n occasional li | mestone    |            |
|            | 1          |      |                |              | 103.66           | ****        | 9.80                 | Weak, dark gre                 | y silty MU           | DSTONE.     |             |                 | 85 964     |            |
| 10         |            |      |                |              | 102.96           | OXXX        | ).70)<br>10.50       |                                |                      |             |             |                 |            |            |
| Œ.         |            |      |                |              | 102.66           |             | 10.80                | Strong, grey L                 | MESTON               | E.          |             |                 |            | 1 [        |
| 11         |            |      |                |              | 102.00           |             | ).70)                | Moderately str                 | ong, grey s          | ilty MUDS   | TONE.       |                 |            |            |
|            |            |      |                |              | 101.96           |             | 11.50                |                                | D COTON              | _           |             |                 |            | 1          |
|            |            |      |                |              |                  |             | 0.50)                | Strong, grey L                 | IMESTON              | E.          |             |                 |            |            |
| 12         |            |      |                |              | 101.46           |             | 12.00                | Weak, grey sil                 | ty MUDS1             | ONE.        |             |                 |            |            |
| 13         |            |      |                |              | 99.90            |             | 1.50)<br>            |                                | 2                    |             |             |                 |            |            |
| 14         |            |      |                |              |                  |             |                      |                                | Bore                 | ehole compl | ete at 13.5 | Om              |            |            |
| 15         |            |      |                |              |                  |             |                      |                                |                      | v           |             |                 |            |            |
| Boring Pro | gress a    | -    |                |              | Ca               | sing        |                      | Chiselling                     |                      | Water       |             | Gene            | ral Remarl | cs         |
| Date       | Time       | De   | epth           | Water<br>Dpt | Depth            | Dia. mm     | Fro                  | m To                           | Hours                | From        | То          |                 |            |            |
|            |            |      |                |              |                  |             |                      |                                |                      |             |             |                 |            |            |
| All dime   | nsions i   |      | es Co          |              | : Site In        | vestigation |                      | Method:                        |                      |             |             | Logged By:      | Approve    | d B        |

|                               |              | BOREHOLE No<br>BH106         |                                      |                  |
|-------------------------------|--------------|------------------------------|--------------------------------------|------------------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |                  |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>112.95mATBM | Co-ordinates:<br>E 453,805 N 225,557 | SLR              |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                    |             |          |                                          |                  |               |              | _    |                                |              |            |                                                                                 |                 | The state of the s | =                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|-------------|----------|------------------------------------------|------------------|---------------|--------------|------|--------------------------------|--------------|------------|---------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ES &                | TEST                                                               | S           |          | <b>5</b>                                 |                  |               |              |      | STR                            | ATA          |            | U 50 850                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H H                     |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type<br>No          | Test<br>Type                                                       | Tes<br>Resu | l<br>lt  | Water                                    | Reduced<br>Level | Legend        | ness)        | -    |                                |              | SCRIPTION  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Instrument/<br>Backfill |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          | 112.75           | 37 37         | 0.           |      | Orange/brown,                  |              |            | OPSOIL).                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          |                  |               |              | F    | irm, light brov                | wn sandy C   | LAY.       | 50                                                                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | i.                                                                 | ľ           |          |                                          |                  | 드프            | (0.80)       | )    |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S9                      |
| <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                                    |             |          |                                          | 111.95           |               | 1            | .00  |                                |              |            |                                                                                 |                 | 8_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| E <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                    | Í           |          | 200                                      |                  | 1             | <u> </u>     | P    | Pale orange and                | d brown oo   | litic LIME | STONE.                                                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |                                                                    | ĺ           |          |                                          |                  |               | ł            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ                   |                                                                    | b           |          |                                          | 2                | 出             | (1.30        | )    |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 1                                                                  | ĺ           |          |                                          |                  |               | Ε.           |      |                                |              |            |                                                                                 |                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B T                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 1                                                                  |             |          |                                          | 110.65           |               | 2            | .30  |                                |              |            |                                                                                 |                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | ļ                                                                  |             |          |                                          |                  |               | ‡            | 1 8  | Strong, fresh li               | ght grey LI  | MESTON     | Ε.                                                                              |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Å                   |                                                                    |             |          | ļ                                        |                  |               | <b>£</b>     |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    |             |          |                                          |                  | 1             | ‡            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    | ļ           |          |                                          |                  |               | (2.00        | ))   |                                |              |            |                                                                                 |                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          |                  |               | ŧ            |      |                                |              |            |                                                                                 |                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                   | 1                                                                  | 1           |          |                                          |                  | H             | ‡            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    | 1           |          |                                          |                  | H             | 7            |      |                                |              |            |                                                                                 | ¥.              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          | 108.65           |               | 1 4          | 1.30 | Strong, light g                | rey and gre  | en LIMES   | TONE.                                                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          | 1                |               | }            |      |                                | ,            |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    | 3           |          |                                          |                  |               | <u> </u>     |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    | 1           |          |                                          |                  |               | ŧ            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| ŧ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    |             |          |                                          | 1                | 口井            | + (2.20      | 0)   |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | i i                                                                |             |          |                                          |                  | 口口            | ‡            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| <b>!</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                    |             |          |                                          |                  |               | ŧ            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| F-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                    |             |          |                                          |                  | 中             | 7            |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    | 1           |          |                                          | 106.45           | 5             | 7 (          | 6.50 |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                                    |             |          |                                          | 100.00           | , <del></del> | (0.4         | 0)   | Orange/brown                   | sandy CL     | AY.        |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目:                      |
| E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                    |             |          |                                          | 106.0            |               |              | 7.00 | Weak, dark gr<br>Weak, dark gr | ey to black  | SHALE.     |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 · H · ·               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 1                                                                  |             |          |                                          |                  |               | (0.50        | 0)   | Weak, dark gr                  | ey, very sil | Ity MUDST  | ONE.                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目                       |
| <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                   |                                                                    |             |          |                                          | 105.4            | 5 <b>XXX</b>  | **           | 7.50 | Weak, grey si                  | tv MIIDS     | TONE with  | occasiona                                                                       | l limestone ba  | inds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 目:                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                    |             |          |                                          |                  |               | <b>¥</b>     |      | weak, giey si                  | ity MODO     | CONE WILL  | occusions                                                                       | a innestorio od |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | omecc a             | nd Wa                                                              | ter Oh      | servatio | ne                                       | Ca               | sing          | <del>1</del> |      | Chiselling                     |              | Water      | Added                                                                           | Gener           | ral Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time                |                                                                    | epth        | Wat      |                                          | Depth            | Dia. n        | nm           | From | -                              | Hours        | From       | То                                                                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 232339              |                                                                    | •           |          | ,,                                       |                  |               |              |      |                                |              |            |                                                                                 | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                    |             | Ĭ        | 2                                        |                  |               |              |      |                                |              |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |             |          |                                          |                  |               |              |      |                                | 8            |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    |             | ļ        |                                          |                  |               |              |      |                                | 19           |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| o ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                                    |             |          |                                          |                  |               |              |      |                                | 3            |            |                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Boring Property Date  All dimensions of the second |                     | <u></u>                                                            | -           | 0        | Detroctor : Site Investigation   Method: |                  |               |              |      |                                | <u> </u>     | T          | I Dec                                                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| All dime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ensions<br>cale 1:5 | s in metres Contractor : Site Investigation<br>:50 Plant: Services |             |          |                                          |                  | N             | Method:      |      |                                |              | Logged By: | Approved                                                                        | з ву:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

|                             | BOREHOLE LOG     |                              |                                      |     |  |  |  |  |  |  |  |
|-----------------------------|------------------|------------------------------|--------------------------------------|-----|--|--|--|--|--|--|--|
| Client:<br>Viridor Waste Ma | nagement         |                              |                                      |     |  |  |  |  |  |  |  |
| Project No: 403.0036.00174  | Date:            | Ground Level:<br>112.95mATBM | Co-ordinates:<br>E 453,805 N 225,557 | SLR |  |  |  |  |  |  |  |
| Project: Ardley Landfill S  | Sheet:<br>2 of 2 |                              |                                      |     |  |  |  |  |  |  |  |

| SAMPLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ES & 7              | ΓEST                                                               | S       | -         |         |                  |        |                           |     | STR        | ATA   |           |              |            | ent/        | i        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|---------|-----------|---------|------------------|--------|---------------------------|-----|------------|-------|-----------|--------------|------------|-------------|----------|
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type<br>No          | Test<br>Type                                                       | Test    | ıt        | Water   | Reduced<br>Level | Legend | Depth<br>(Thick-<br>ness) |     |            | NS 10 | CRIPTIO   | N            |            | Instrum     | Backfill |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                                                    |         |           | 200 mm  |                  |        | limestone ban             | ds. |            |       |           |              |            |             |          |
| -10<br>-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                                                    |         |           |         |                  |        |                           |     |            |       |           |              |            |             |          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |         |           |         | 101.45           |        | 11.50                     |     |            | Bore  | hole comp | lete at 11.5 | 0m         |             |          |
| -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                    |         | X.        |         |                  |        |                           |     |            |       |           |              |            |             |          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |         |           |         |                  |        |                           |     |            |       |           |              |            |             |          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                    |         |           |         |                  |        |                           |     |            |       |           |              |            |             |          |
| Boring Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ogress a            | nd Wa                                                              | ter Obs | servatio  | ns      | Ca               | sing   |                           |     | Chiselling |       | Water     | Added        | Gener      | al Remarks  |          |
| Boring Pro Date  All dimensional and the second sec | Time                |                                                                    | epth    | Wat<br>Dp | er<br>t | Depth            | Dia.   | mm Fr                     | om  | То         | Hours | From      | То           |            |             |          |
| All dim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ensions<br>Scale 1: | ions in metres   Contractor : Site Investigation   Plant: Services |         |           |         |                  |        | ion                       | Me  | thod:      |       |           |              | Logged By: | Approved By | y:       |

|                             | BOREHOLE LOG |                              |                                      |        |  |  |  |  |  |  |  |
|-----------------------------|--------------|------------------------------|--------------------------------------|--------|--|--|--|--|--|--|--|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |        |  |  |  |  |  |  |  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>112.33mATBM | Co-ordinates:<br>E 453,801 N 225,507 | SLR 🚽  |  |  |  |  |  |  |  |
| Project: Ardley Landfill S  | Site Monitor | ing Borchole Installations   |                                      | Sheet: |  |  |  |  |  |  |  |

| Ar         | Ardley Landfill Site Monitoring Borchole Installations PLES & TESTS STRATA |         |       |              |                      |             |                           |       |                     |               |             | Silect.      | l of 3         |            |             |
|------------|----------------------------------------------------------------------------|---------|-------|--------------|----------------------|-------------|---------------------------|-------|---------------------|---------------|-------------|--------------|----------------|------------|-------------|
| SAMPLI     | ES &                                                                       | TEST    | S     |              |                      |             |                           |       | STF                 | ATA           |             |              |                |            | ne /        |
| Depth      | Type<br>No                                                                 |         | Test  | Water        | Reduced<br>Level     | Legend      | Depth<br>(Thick-<br>ness) |       |                     | DES           | SCRIPTIO    | N            |                |            | Instrument/ |
|            |                                                                            |         |       |              | 112.02               | 14 11       | 0.30                      | Sof   | to firm, b          | rown sandy    | CLAY (TO    | OPSOIL).     |                |            |             |
|            |                                                                            |         |       |              | 112.03<br>111.83     |             | 0.50                      |       | m. brown to         | orange sar    | ndy CLAY.   |              |                |            |             |
|            | 1                                                                          |         |       |              | 111.63               | ΪÌ          | - 0.50                    |       |                     | ale brown a   |             |              | ESTONE.        |            |             |
|            | 1                                                                          |         | 20    |              | 1                    |             | Ē                         |       |                     |               |             |              |                |            |             |
| -1         |                                                                            | Vi      | 1     |              |                      | H           | (1.00)                    |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       |              |                      | H           | }                         |       |                     |               |             |              |                |            | Ė           |
|            |                                                                            |         |       | 1            | 110.83               | 1           | 1.50                      | 1/2   |                     | ala huasim s  | and vallous | anlitia I IX | ESTONE.        | 0.000      |             |
|            |                                                                            |         |       |              |                      | 井           | ŧ                         | ve    | ry strong, p        | ale brown a   | and yellow  | oonuc Liv    | IESTONE.       |            |             |
| [ ,        |                                                                            |         |       |              |                      | 世上          | £                         |       |                     |               |             |              |                |            |             |
| -2<br>:    | 1                                                                          | ľ       |       |              | 1                    | $H^{\perp}$ | (1.50)                    | 1     |                     |               |             |              |                |            |             |
|            | 1                                                                          | 1       |       |              |                      | H           | 1.30)                     | ř.    |                     | 9             |             |              |                |            |             |
|            |                                                                            |         | li .  |              |                      | HI          | ‡                         | 1     |                     |               |             |              |                |            |             |
| -          |                                                                            |         |       |              | 100.22               | 二二          | £ ,,,                     |       |                     |               |             |              |                |            |             |
| -3         |                                                                            |         |       |              | 109.33               |             | 3.00                      | Str   | ong, very p         | ale brown a   | and vellow  | oolitic LM   | ESTONE.        |            |             |
| [          |                                                                            |         |       | 1            |                      | T           | }                         | "     | g, , p              |               |             |              |                |            |             |
| :          | 3                                                                          |         | 1     |              | 1                    | H           | ‡                         | 1     |                     |               |             |              |                |            |             |
| :          | 1                                                                          |         |       |              |                      |             | ‡                         |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       |              |                      |             | (1.60)                    |       |                     |               |             |              |                |            |             |
| F⁴         | 1                                                                          |         |       |              |                      |             | ŧ                         |       |                     |               |             |              |                |            |             |
| [          |                                                                            |         |       | 19           |                      |             | ‡                         |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       | 99           | 107.73               | 3           | 4.6                       | 0     | A liabthus          | ··· aandri C  | TAV         |              | 2000           |            | 1           |
|            |                                                                            |         | 1     |              |                      |             | <b>‡</b>                  | 50    | n, light bro        | wn sandy (    | LAI.        |              |                |            | ı           |
| -5         |                                                                            | 1       |       |              | 1                    |             | <del>[</del>              | 1     |                     |               |             |              |                |            |             |
| -          |                                                                            |         |       |              |                      |             | <u>-</u>                  | 1     |                     |               |             |              |                |            | ı           |
| E          |                                                                            | 1       | F     |              |                      |             | (1.90)                    | Î     |                     |               |             |              |                |            |             |
|            |                                                                            | 1       |       |              |                      | <u> </u>    | 1 (1.90)                  |       |                     |               |             |              |                |            |             |
| ļ.,        |                                                                            | 1       |       | 6            |                      |             | 7                         | 1     |                     |               |             |              |                |            |             |
| -6         | ं                                                                          | 1       | 1     |              |                      |             | Ŧ                         | 1     |                     |               |             |              |                |            | E           |
| E          |                                                                            |         |       | =            | 105.83               | , ===       | 6.5                       | ام    |                     |               |             |              |                |            | ı           |
| -          | k                                                                          |         |       |              | 103.8.               |             | -                         | St    | iff, dark gre       | y, silty, sar | ndy CLAY.   |              |                |            | 1           |
|            |                                                                            |         |       |              | 105.5                | 3           | 6.8                       | 01    |                     | (B)( 200)     |             |              | casional limes | tone       | -           |
| F-7        |                                                                            |         | 1     | ŝ            | 8                    |             | ¥-                        | ba    | oderatety w<br>nds. | eak, grey N   | MODSTON     | E, with oc   | Casional Inne  | Storie     |             |
| E          |                                                                            |         | 7     |              |                      |             | ₹                         | 17607 |                     |               |             |              |                |            | ı           |
| E          |                                                                            | 1       |       |              |                      |             | (1.20)                    | 4     |                     |               |             |              |                |            |             |
| <u> </u>   |                                                                            | 1       |       |              |                      |             | <b>]</b>                  | 1     |                     |               |             |              |                |            |             |
| -          |                                                                            |         |       |              | 104.3                | 3           | 8.0                       | 0     |                     |               |             |              |                |            |             |
| Boring Pro | ogress a                                                                   | nd Wa   |       |              | Ca                   | sing        |                           |       | Chiselling          |               | Water       | Added        | Gene           | ral Remark | S           |
| Date       | Time                                                                       | D       | epth  | Water<br>Dpt | Depth                | Dia. n      | nm Fr                     | om    | То                  | Hours         | From        | То           |                |            |             |
|            |                                                                            |         |       | 3.53         |                      |             |                           |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       |              |                      |             | - 11                      |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       |              |                      |             |                           |       |                     |               |             |              |                |            |             |
|            |                                                                            |         |       |              |                      |             | 100                       |       |                     |               | 8           |              |                |            |             |
|            |                                                                            |         |       |              |                      |             | 118                       |       |                     |               |             |              | I              |            |             |
|            |                                                                            |         |       |              |                      |             |                           |       |                     |               |             |              |                |            |             |
| All dime   | ensions                                                                    | in metr | es Co | ontractor    | : Site In            | vestigatio  | on .                      | Me    | thod:               |               | 1           |              | Logged By:     | Approved   | d By        |
| 1.0        | cale 1:5                                                                   |         | Pla   | ant:         | : Site In<br>Service | 25          | W-151                     |       |                     |               |             |              | -7.            |            |             |

|                             | BOREHOLE No<br>BH107 |                              |                                      |                  |
|-----------------------------|----------------------|------------------------------|--------------------------------------|------------------|
| Client:<br>Viridor Waste Ma | nagement             |                              | to the second second                 |                  |
| Project No: 403.0036.00174  | Date:                | Ground Level:<br>112.33mATBM | Co-ordinates:<br>E 453,801 N 225,507 | SLR 🚧            |
| Project: Ardley Landfill S  | Site Monitor         | ing Borchole Installations   | 3                                    | Sheet:<br>2 of 3 |

| Alu                       | Ardley Landfill Site Monitoring Borchole Installations 2 of 3  MPLES & TESTS STRATA |              |                |                 |       |                        |                                                                                                                          |                           |                                                                                                                |             |              |        |                           |             |  |  |
|---------------------------|-------------------------------------------------------------------------------------|--------------|----------------|-----------------|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------|--------------|--------|---------------------------|-------------|--|--|
| SAMPLE                    | S & 7                                                                               | ΓEST         | S              |                 | ı,    |                        |                                                                                                                          |                           | STRA                                                                                                           | TA          |              |        |                           | ment        |  |  |
| Depth                     | Type<br>No                                                                          | Test<br>Type | Test<br>Result |                 | Water | Reduced<br>Level       | Legena                                                                                                                   | Depth<br>(Thick-<br>ness) |                                                                                                                | DES         | CRIPTION     | 9<br>1 |                           | Instrument  |  |  |
|                           |                                                                                     |              |                |                 |       | 103.93                 |                                                                                                                          | (0.40)                    | Strong, fresh ligh                                                                                             | t grey MU   | JDSTONE.     |        |                           |             |  |  |
| e                         |                                                                                     |              |                |                 |       | 103.23                 |                                                                                                                          | 0.10                      | Moderately stron                                                                                               | g, fresh li | ght grey LII | MESTON | E.                        |             |  |  |
| 10                        |                                                                                     |              |                |                 |       |                        |                                                                                                                          | (2.10)                    | g = 46<br>G                                                                                                    |             |              |        |                           | 1           |  |  |
|                           |                                                                                     |              |                |                 |       | 101.83                 | x - x                                                                                                                    | 10.50                     | Soft to firm, gre                                                                                              | y silty CL  | AY.          |        |                           |             |  |  |
| 11                        |                                                                                     |              |                |                 |       | 101.53                 | 101.53 × 10.80 Soft to fifth, gey stry CEAT.  Moderately fresh, light grey LIMESTONE, with occasional we mudstone bands. |                           |                                                                                                                |             |              |        |                           |             |  |  |
|                           |                                                                                     |              |                |                 | 1     | 100.83                 | 00.83 11.50 11.50 Soft to firm, grey silty CLAY.                                                                         |                           |                                                                                                                |             |              |        |                           |             |  |  |
| 12                        |                                                                                     |              |                |                 |       | 100.63                 | B- x - 7                                                                                                                 | (0.80)                    | 11.70 Soft to firm, grey silty CLAY.  Moderately strong, grey silty MUDSTONE, with occasional limestone bands. |             |              |        |                           |             |  |  |
|                           |                                                                                     |              |                |                 |       | 99.8                   | 3                                                                                                                        | 12.50                     | Firm to stiff, da                                                                                              | rk grey si  | lty CLAY.    |        |                           |             |  |  |
| -13                       |                                                                                     |              |                |                 |       | 98.9                   | -   -   -   -   -   -   -   -   -   -                                                                                    | (0.90)<br>(13.40)         |                                                                                                                |             |              |        |                           |             |  |  |
| -14                       |                                                                                     |              |                |                 |       |                        |                                                                                                                          | (1.10)                    | Moderately stro                                                                                                | eng, grey l | MUDSTON      | Œ.     |                           |             |  |  |
|                           |                                                                                     |              | 10.            |                 |       | 97.8                   | X X                                                                                                                      | 14.5                      | Very soft, black                                                                                               | k clayey S  | ILT.         |        |                           | 2 2         |  |  |
| -15                       |                                                                                     | e e          |                |                 |       | 97.3                   | 3 × × × × × × × × × × × × × × × × × × ×                                                                                  | (0.50)<br>15.0            |                                                                                                                |             |              | LAY.   | -1247 -10 <b>3</b> (1997) |             |  |  |
| Boring Pro Date  All dime |                                                                                     |              |                |                 |       |                        | × ×                                                                                                                      | (1.00)                    |                                                                                                                |             |              |        |                           |             |  |  |
| Boring Pro                | OTTOGE !                                                                            | and Wa       | ter Ohe        | ervatio         | ons   | 96.3                   | asing                                                                                                                    | 16.0                      | Chiselling                                                                                                     |             | Water        | Added  | Gener                     | ral Remarks |  |  |
| Date Date                 | Time                                                                                |              | epth           | Wa<br>Dr        | ter   | Depth                  | Dia. n                                                                                                                   | nm Fr                     | om To                                                                                                          | Hours       | From         | То     |                           |             |  |  |
| Date                      | Imic                                                                                |              | -pui           | Մ               | pt .  | Sepan                  |                                                                                                                          |                           |                                                                                                                |             |              |        |                           |             |  |  |
| All dime                  | ensions                                                                             |              | res            | Contr<br>Plant: |       | r : Site Ir<br>Service |                                                                                                                          | on                        | Method:                                                                                                        |             |              |        | Logged By:                | Approved F  |  |  |

|                               | BOREHOLE LOG |                              |                                      |                  |  |  |  |  |  |  |  |
|-------------------------------|--------------|------------------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|
| Client: Viridor Waste Ma      | nagement     |                              |                                      |                  |  |  |  |  |  |  |  |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>112.33mATBM | Co-ordinates:<br>E 453,801 N 225,507 | SLR 🖋            |  |  |  |  |  |  |  |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   | 1                                    | Sheet:<br>3 of 3 |  |  |  |  |  |  |  |

| Ardley               | Landi      | ill Site N | lonito       | oring Bo                | renoi         | e instai                                         | iauoi        | is                           |                            |                                 |                 | 3                              | of 3                   |
|----------------------|------------|------------|--------------|-------------------------|---------------|--------------------------------------------------|--------------|------------------------------|----------------------------|---------------------------------|-----------------|--------------------------------|------------------------|
| SAMPLES &            | & TEST     | S          |              |                         |               |                                                  |              | STRA                         | ATA                        |                                 |                 |                                | nen/                   |
| Depth Ty             |            | Test       | Water        | Reduced<br>Level        | Legend        | Depth<br>(Thick-                                 |              |                              | DESC                       | CRIPTION                        |                 |                                | Instrumen/<br>Backfill |
| 7                    | , iye      |            |              |                         |               | ness)                                            | Mod<br>silty | erately weal<br>clay and lin | k, dark gre<br>nestone ban | y MUDSTONE,<br>ds with occasion | with venal foss | ery thin band<br>il fragments. | s of                   |
| 18                   |            |            |              |                         |               |                                                  |              |                              |                            |                                 |                 |                                | A                      |
| 19                   |            |            |              |                         |               | (6.00)                                           |              |                              |                            |                                 |                 |                                |                        |
| 20                   |            |            |              |                         |               |                                                  |              |                              |                            |                                 | •0              |                                |                        |
| 21                   |            |            |              |                         |               |                                                  |              |                              |                            |                                 |                 |                                |                        |
| -22                  |            |            |              | 90.3                    | 3             | 22.0                                             | 00           | *                            | Pore                       | ehole complete a                | at 22 00s       |                                |                        |
| -23                  |            |            |              |                         |               |                                                  |              |                              | Bore                       | mole complete a                 | L 22.001        |                                |                        |
| Boring Progre        | ess and W  | ater Obser | vations      | C                       | asing         | <del>-                                    </del> |              | Chiselling                   |                            | Water Add                       | ed              | Gener                          | al Remarks             |
| Date T               |            | Depth      | Water<br>Dpt | Depth                   | Dia.          | mm l                                             | rom          | То                           | Hours                      | From                            | То              |                                |                        |
| Boring Progra Date T |            |            |              |                         |               |                                                  |              |                              |                            |                                 |                 |                                |                        |
| All dimens           | ions in me |            | Contract     | or : Site Ir<br>Service | vestiga<br>es | tion                                             | Me           | ethod:                       |                            |                                 |                 | ogged By:                      | Approved B             |

|                             | BOREHOLE LOG |                              |                                      |                  |  |  |  |  |  |  |  |
|-----------------------------|--------------|------------------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                  |  |  |  |  |  |  |  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>111.83mATBM | Co-ordinates:<br>E 453,790 N 225,458 | SLR              |  |  |  |  |  |  |  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2 |  |  |  |  |  |  |  |

| Are       | dley L                                                                               | Landfill Site Monitoring Borenole II |       |              |                                         |                  |                                       |                |                      | of installations 1 of |             |              |                       |            |               |            |                         |
|-----------|--------------------------------------------------------------------------------------|--------------------------------------|-------|--------------|-----------------------------------------|------------------|---------------------------------------|----------------|----------------------|-----------------------|-------------|--------------|-----------------------|------------|---------------|------------|-------------------------|
| SAMPL     | ES &                                                                                 | TEST                                 | Š     |              |                                         |                  |                                       |                |                      |                       | STR         | ATA          |                       |            |               |            | ent                     |
| Depth     | Type<br>No                                                                           |                                      | Test  | t i          | Water                                   | Reduced<br>Level | Legend                                | (Thic<br>ness) | epth<br>k-           |                       | Million 1   | DES          | CRIPTION              | ٧          |               |            | Instrument/<br>Backfill |
| :         |                                                                                      |                                      |       |              |                                         | 111.33           |                                       | (0.5           |                      |                       |             | rown sandy   |                       |            |               |            |                         |
| 1         |                                                                                      |                                      |       |              |                                         | 109.83           |                                       | (1.5           |                      |                       |             |              |                       |            | itic LIMESTO  | NE.        |                         |
| -3        |                                                                                      |                                      |       |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 107.83           |                                       | (2.0           |                      |                       |             |              |                       |            | ÆSTONE.       |            |                         |
| -4<br>-   |                                                                                      | ķ                                    |       |              |                                         | 107.53           | Щ                                     | -              | 4.30                 |                       |             | 1000 10      | and yellow            |            | ÆSTONE.       |            | 目                       |
| -5        |                                                                                      |                                      |       |              |                                         | 106.83           | 吕                                     | (0.1           | 5.00<br>60)          | We                    | ak, weathe  | red, very sa | andy LIME             | STONE.     | <u> </u>      | 2.0        |                         |
| 6         |                                                                                      |                                      | 50000 |              |                                         | 106.23<br>106.13 | × × × × × × × × × × × × × × × × × × × | (0.            | 6.40                 | Fin                   | m, dark gre | y silty CLA  |                       |            |               |            |                         |
| 7         | 71<br>10<br>71                                                                       |                                      |       |              |                                         | 104.5            |                                       | (0.            | 6.50,<br>80)<br>7.30 | Mo                    | derately fr | esh, light g | rey MUDS<br>rey LIMES | TONE.      | casional muds | tone       |                         |
|           |                                                                                      | <u> </u>                             |       |              |                                         |                  | 异                                     | <u></u>        |                      |                       |             |              |                       |            |               |            |                         |
| Boring Pr |                                                                                      | _                                    |       |              |                                         |                  | sing                                  |                | 5/2%                 | -                     | Chiselling  |              |                       | Added      | Gener         | ral Remark | s                       |
| Date      | Time                                                                                 | De                                   | epth  | Water<br>Dpt |                                         | Depth            | Dia. 1                                | mm             | From                 | m                     | То          | Hours        | From                  | То         |               |            |                         |
|           | All dimensions in metres Scale 1:50  Contractor : Site Investigation Plant: Services |                                      |       |              |                                         |                  |                                       |                | Met                  | hod:                  |             |              |                       | Logged By: | Approved      | d By:      |                         |

|                            | )            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH108 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>111.83mATBM | Co-ordinates:<br>E 453,790 N 225,458 | SLR                  |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

| Ar         | aley 1     | andi   | III SITE                               | e Mon        | itoring i               | sorenoi    | e instai                  | lations                         |                       |            |              |               | 2 of 2      |                  |
|------------|------------|--------|----------------------------------------|--------------|-------------------------|------------|---------------------------|---------------------------------|-----------------------|------------|--------------|---------------|-------------|------------------|
| SAMPL      | ES &       | TEST   | S                                      |              |                         |            |                           | ST                              | RATA                  |            |              |               |             | ent/             |
| Depth      | Type<br>No | 100    | Test                                   | t Works      | Reduced                 | Legend     | Depth<br>(Thick-<br>ness) |                                 |                       | SCRIPTIO   |              |               |             | IIIIIII Backfill |
| -9         |            |        |                                        |              |                         |            | (2.70)                    | Moderately fr<br>bands. (contin | esh, grey Li<br>nued) | MESTON     | E, with occ  | easional muds | tone        |                  |
| -10<br>-10 |            |        |                                        |              | 101.8                   | 3          | 10.00                     |                                 | Bore                  | chole comp | lete at 10.0 | )Om           |             |                  |
| -11        |            |        | ************************************** |              |                         |            |                           |                                 |                       |            |              |               |             |                  |
| -12        |            |        | <b>.</b>                               |              |                         |            |                           |                                 |                       |            |              |               |             |                  |
| -13        |            |        |                                        |              | E<br>E                  |            |                           |                                 |                       | ı          |              |               |             |                  |
| 14         |            |        |                                        |              |                         |            |                           |                                 |                       |            |              |               |             |                  |
| 15         |            |        |                                        |              |                         |            |                           |                                 |                       |            |              |               |             |                  |
| Boring Pro | ogress ar  | nd Wat | er Obse                                | rvations     | C                       | sing       | 1                         | Chiselling                      | ,                     | Water      | Added        | Gene          | ral Remarks | s                |
| Date       | Time       | -      | epth                                   | Water<br>Dpt | Depth                   | Dia. m     | m Fro                     |                                 | Hours                 | From       | То           |               | 7           |                  |
| All dime   | ensions in |        | es (                                   | Contracto    | or : Site In<br>Service | vestigatio | n                         | Method:                         | -                     |            |              | Logged By:    | Approved    | l By:            |

|                            | 1            | BOREHOLE LOG                 | 3                                    | BOREHOLE No<br>BH109 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>111.26mATBM | Co-ordinates:<br>E 453,779 N 225,408 | SLR                  |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   | <u> </u>                             | Sheet:<br>1 of 2     |

| SAMPL              | ES &             | <b>TEST</b>  | S              |                   |                  |                                                   |                       | ST                             | RATA               |               |             |                                         | , ant       |
|--------------------|------------------|--------------|----------------|-------------------|------------------|---------------------------------------------------|-----------------------|--------------------------------|--------------------|---------------|-------------|-----------------------------------------|-------------|
| Depth              | Type<br>No       | Test<br>Type | Test<br>Result | Water             | Reduced<br>Level | Legend (T                                         | Depth<br>hick-<br>ss) | DESCRIPTION                    |                    |               |             |                                         | Instrument  |
|                    |                  |              |                |                   |                  |                                                   | 0.50)                 | Firm, orange/                  | brown sand         | y CLAY.       |             |                                         |             |
|                    |                  |              |                |                   | 110.76           |                                                   | 0.50                  | Moderately st                  | rong nale l        | rown/vello    | w politic I | IMESTONE                                |             |
|                    | Î                |              |                |                   |                  |                                                   |                       | Wioderatery St                 | rong, pare t       | ·             | w contac L  | II. |             |
| 1                  |                  |              |                |                   |                  | 廿                                                 |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  | <del>                                    </del>   | 1.80)                 |                                |                    |               |             |                                         | 2           |
|                    |                  |              |                |                   |                  | <del>                                      </del> | 2001024               |                                |                    |               |             |                                         |             |
| 2                  |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
| 2                  |                  |              | E .            | 1                 | 108.96           |                                                   | 2.30                  |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       | Strong, very p                 | ale brown          | and yellow    | oolitic LIM | IESTONE.                                |             |
|                    |                  |              |                |                   |                  | 井井                                                |                       |                                |                    |               |             |                                         |             |
| 3                  |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   | 9                     |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
| •                  |                  | £            |                |                   |                  | 1                                                 | 3.20)                 |                                |                    |               |             |                                         |             |
| Si .               |                  |              |                |                   |                  | 畔                                                 |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
| 5                  |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   | 105.76           |                                                   | 5.50                  |                                |                    |               |             |                                         |             |
|                    |                  |              |                | 1                 | 105.56           |                                                   | 5.70                  | Soft, brown s                  |                    |               |             |                                         |             |
| 6                  |                  |              |                |                   | 105.26           |                                                   | 6.00                  | Soft, grey, sil                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       | Moderately st<br>limestone ban | rong, grey<br>ids. | silty MUDS    | STONE, wi   | th occasiona                            | 1           |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         | Ė           |
|                    |                  |              |                | Ì                 |                  |                                                   |                       |                                |                    |               |             |                                         |             |
| 7                  |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   | • • • •               |                                |                    |               |             |                                         | Ŀ           |
|                    |                  |              |                |                   |                  | <b>****</b>                                       | 3.00)                 |                                |                    |               |             |                                         |             |
|                    | 1                |              |                |                   |                  |                                                   | ii -                  |                                |                    |               |             | <u> </u>                                |             |
| Boring Pro<br>Date | gress an<br>Time | d Wate       | r Observati    | ons<br>iter<br>ot | Ca:<br>Depth     | Dia. mm                                           | From                  | Chiselling To                  | Hours              | Water<br>From | Added<br>To | Gene                                    | ral Remarks |
|                    |                  |              |                | Dt.               | p                |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              | 3              |                   |                  |                                                   |                       | 0                              |                    |               |             |                                         |             |
|                    |                  |              | 3              |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    |                  |              |                |                   |                  |                                                   |                       |                                |                    |               |             |                                         |             |
|                    | nsions in        | 1            |                |                   |                  | estigation<br>i                                   | ш                     | Method:                        |                    |               |             | ogged By:                               |             |

|                             | ]            | BOREHOLE LOG                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOREHOLE No<br>BH109 |
|-----------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              | Assessment of the second of th |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>111.26mATBM | Co-ordinates:<br>E 453,779 N 225,408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet:<br>2 of 2     |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   |                       |             | A-0.084-0311-0-09-08      |           |                             |         |            |                                    |            | 2 01 2     |                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------------|-----------------------|-------------|---------------------------|-----------|-----------------------------|---------|------------|------------------------------------|------------|------------|---------------------|
| SAMPL     | ES & '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEST         | S              |                   |                       |             |                           |           | STF                         | RATA    |            |                                    |            |            | ent/                |
| Depth     | Type<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test<br>Type | Test<br>Result | Water             | Reduced<br>Level      | Legend      | Depth<br>(Thick-<br>ness) |           |                             |         | SCRIPTIO   |                                    |            | ., .,      | Instrument Backfill |
| -9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   | 102.26                |             | 9.00                      | Mo<br>lim | derately str<br>estone band | 2-2     |            | lty MUDSTONE, with occasional add) |            |            |                     |
| 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   |                       |             |                           |           |                             | Bore    | ehole comp | lete at 9.00                       | )m         |            |                     |
| -11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   |                       |             |                           |           | ×                           |         |            |                                    |            |            |                     |
| -12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   |                       |             |                           |           |                             |         |            |                                    |            |            |                     |
| - 13      | NAME OF THE PARTY |              |                |                   |                       |             |                           |           |                             |         |            |                                    |            |            |                     |
| -14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD           |                |                   |                       |             |                           |           |                             |         |            |                                    |            |            |                     |
| -15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                   |                       |             |                           |           |                             |         |            |                                    |            |            |                     |
| Boring Pr | ogress ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd Wat       | er Observ      | vations           | Ca                    | sing        |                           |           | Chiselling                  |         | Water      | Added                              | Gene       | ral Remark | S                   |
| Date      | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | pth            | Water<br>Dpt      | Depth                 | Dia. m      | m Fro                     | m         | То                          | Hours   | From       | То                                 |            | 2, 3       |                     |
| All dime  | ensions is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | s Co           | ontractor<br>ant: | : Site Inv<br>Service | estigations | IIn                       | Me        | thod:                       | 7-2-300 |            |                                    | Logged By: | Approved   | d By:               |

|                             | []           | BOREHOLE LOG                 |                                       | BOREHOLE No<br>BH110 |
|-----------------------------|--------------|------------------------------|---------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                       |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>110.86mATBM | Co-ordinates:<br>E 453,769 N 225,360  | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   | · · · · · · · · · · · · · · · · · · · | Sheet:<br>1 of 2     |

| SAMPL      | ES &       | ΓEST         | S                | ۳ ا   |                  |              |                          | ST             | RATA          |             |            |                |            | tent        |
|------------|------------|--------------|------------------|-------|------------------|--------------|--------------------------|----------------|---------------|-------------|------------|----------------|------------|-------------|
| Depth      | Type<br>No | Test<br>Type | Test<br>Result   | Water | Reduced<br>Level | Legend (     | Depth<br>Thick-<br>less) |                | DI            | ESCRIPTIO   | ON         |                |            | Instrument/ |
|            |            |              |                  | T     |                  |              |                          | Firm, brown    | sandy CLA     | Y.          | 833.00     | M.000 00000    |            | Ū           |
|            | 3          |              |                  |       |                  |              | (0.90)                   |                |               |             |            |                |            |             |
|            |            |              |                  |       |                  |              |                          |                |               |             |            |                |            |             |
| .1         |            |              |                  |       | 109.96           | <del> </del> | 0.90                     | Fairly weather | red venun     | ale brown/  | vellou ool | itic LIMESTO   | NE         | -           |
|            |            |              |                  |       | 109.66           |              | 1.20                     | 35.0           | St. 505       |             | 8          |                |            |             |
|            |            |              |                  |       | 109.26           |              | (0.40)<br>1.60           | Moderately s   | trong, very   | pale brown  | vyellow o  | olitic LIMEST  | ONE.       |             |
|            |            |              |                  |       | 109.26           |              | 1.80                     | Strong, very   | pale brown    | and yellov  | oolitic Ll | MESTONE.       |            |             |
| -2         |            |              |                  | 00    |                  |              |                          | Moderately s   | trong, pale   | brown/yell  | ow oolitic | LIMESTONE      | l.         |             |
|            |            |              |                  | P     |                  |              | (0.80)                   |                |               |             |            |                |            |             |
|            |            |              |                  | 30    | 108.26           |              | 2.60                     |                |               |             |            |                |            |             |
|            |            |              |                  |       |                  |              |                          | Strong, pale l | brown and     | yellow ooli | tic LIMES  | TONE.          |            | 7           |
| -3         |            |              |                  |       |                  |              |                          |                |               |             |            |                |            |             |
|            | 1          |              |                  |       |                  |              | (1.40)                   |                |               |             |            |                |            |             |
|            |            |              |                  |       |                  |              |                          |                |               |             |            |                |            |             |
|            |            |              |                  |       | 100.00           |              | 4.00                     |                |               |             |            |                |            |             |
| -4         |            |              |                  |       | 106.86           |              | 4.00                     | Moderately s   | trong, pale   | brown ooli  | tic LIMES  | STONE.         |            | 1           |
|            |            |              |                  |       | 106.36           |              | (0.50)<br>4.50           |                | 14,000 C.O.O. |             |            |                |            |             |
|            |            |              |                  |       | 100.30           |              |                          | Strong, pale   | brown and     | yellow ooli | tic LIMES  | TONE.          |            | ┪.          |
| -          | 3          |              |                  |       | 105.86           |              | (0.50)<br>5.00           |                |               |             |            |                |            |             |
| -5         |            |              |                  |       |                  | 开手           |                          | Moderately s   | trong, grey   | LIMESTO     | NE.        | 17,            |            | Ţ:          |
|            |            |              |                  |       |                  |              | (1.00)                   |                |               |             |            |                |            |             |
|            |            | l            |                  |       |                  |              | (1.00)                   |                |               |             |            |                |            | ÷           |
| -6         |            |              |                  |       | 104.86           |              | 6.00                     |                |               |             |            |                |            |             |
|            | d.         |              |                  |       | 104.56           |              | 6.30                     | Soft, brown s  |               |             |            |                |            |             |
|            |            |              |                  |       | 104.36           |              | 6.50                     | Stiff, dark gr |               |             |            |                |            | ]:          |
|            |            |              |                  |       |                  |              |                          | bands.         | trong, grey   | MUDSIO      | NE, with   | occasional lim | estone     |             |
| -7         |            |              |                  |       |                  | ĦŤ           |                          |                |               |             |            |                |            |             |
|            |            |              |                  | 3     |                  |              |                          |                |               |             |            |                |            |             |
|            |            |              |                  | 8     |                  |              |                          |                |               |             |            |                |            |             |
|            |            |              |                  |       |                  | 団            | (2.50)                   |                |               |             |            |                |            |             |
| Boring Pro | gress an   | d Wate       | r Observation    | ons   | Cas              | ing          | 1                        | Chiselling     |               | Water       | r Added    | Gene           | ral Remark | _           |
| Date       | Time       | Dep          |                  |       | Depth            | Dia. mm      | Fron                     |                | Hours         | From        | То         |                |            |             |
|            |            |              | <u> </u>         |       |                  |              |                          |                |               |             |            |                |            |             |
|            |            |              |                  |       |                  |              |                          |                | 1             |             |            |                |            |             |
|            |            |              |                  |       |                  |              |                          | 1              |               |             |            |                |            |             |
|            |            |              |                  |       |                  |              | 1                        |                |               |             |            |                |            |             |
| -          |            |              |                  |       |                  |              |                          |                |               |             |            |                |            |             |
|            |            | 1            |                  | L     | 0                |              | Щ                        |                | <u> </u>      |             | <u> </u>   |                | Ţ          | _           |
| All dimer  | ale 1:50   |              | Contra<br>Plant: |       | Site Inve        | estigation   | Į.                       | Method:        |               |             |            | Logged By:     | Approved   | d B         |

|                             | ]            | BOREHOLE LOG                 |                                         | BOREHOLE No<br>BH110 |
|-----------------------------|--------------|------------------------------|-----------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              | t. ************************************ |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>110.86mATBM | Co-ordinates:<br>E 453,769 N 225,360    | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                         | Sheet:<br>2 of 2     |

| SAMPL      | ES &      | <b>TEST</b>  | S              |             |                  |        |                           | STE                              | RATA                 |            |              |                |            | ent                      |
|------------|-----------|--------------|----------------|-------------|------------------|--------|---------------------------|----------------------------------|----------------------|------------|--------------|----------------|------------|--------------------------|
| Depth      | 1         | Test<br>Type | Test<br>Result | Water       | Reduced<br>Level | Legend | Depth<br>(Thick-<br>ness) |                                  |                      | SCRIPTIO   |              |                | 8          | Instrum                  |
| •          |           |              |                |             | 101.86           |        | 9.00                      | Moderately str<br>bands. (contin | rong, grey N<br>ued) | MUDSTON    | E, with oc   | casional limes | stone      | International Instrument |
|            |           |              |                |             |                  |        |                           |                                  | Boro                 | ehole comp | lete at 9.00 | )m             |            |                          |
| 10         |           |              |                |             |                  |        |                           |                                  |                      |            |              |                |            |                          |
| 11         |           |              |                |             |                  |        |                           |                                  |                      |            |              |                |            |                          |
| 12         |           |              |                |             |                  |        |                           |                                  |                      |            |              |                |            |                          |
| 13         |           |              |                |             |                  |        |                           |                                  |                      |            |              |                |            |                          |
| 14         |           |              |                |             |                  |        |                           |                                  |                      |            |              |                |            |                          |
| 15         |           |              |                |             |                  |        | F                         |                                  |                      |            |              |                |            |                          |
| Boring Pro | ogress at | nd Wat       | er Observa     | ions        | Ca               | sing   | <u> </u>                  | Chiselling                       |                      | Water      | Added        | Gene           | ral Remark | ıs                       |
| Date       | Time      | P            |                | ater<br>Opt | Depth            | Dia. m | m Fro                     |                                  | Hours                | From       | То           |                |            |                          |
|            |           |              |                |             |                  |        | ·                         |                                  |                      |            |              |                |            |                          |

|                             | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH111 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>110.24mATBM | Co-ordinates:<br>E 453,758 N 225,305 | SLR >                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| Ardley Landfill Site M                              | ionitoring Borehole I                     | nstallations                                                                                                                                                                                                                    |                                               |             | 1 of 2      |  |  |
|-----------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|-------------|--|--|
| SAMPLES & TESTS                                     |                                           | STRATA                                                                                                                                                                                                                          |                                               |             | ent/        |  |  |
| Depth Type Test Test Result                         | Reduced Legend (Th                        |                                                                                                                                                                                                                                 | SCRIPTION                                     |             | Instrument  |  |  |
|                                                     | 109.94                                    | 0.30 Soft to firm, orange/brow                                                                                                                                                                                                  | n sandy CLAY.                                 |             |             |  |  |
| 2                                                   | 109.24                                    | Moderately strong, brown 1.00  Moderately strong, pale b .50)                                                                                                                                                                   |                                               |             | ONE.        |  |  |
|                                                     | 107.74                                    | 2.50 Strong, pale brown and yes                                                                                                                                                                                                 | ellow oolitic LIMEST                          | ONE, with o | ccasional   |  |  |
| з                                                   | 107.24                                    | 3.00 Moderately strong, pale b                                                                                                                                                                                                  | rown and vellow onlit                         | ic LIMESTO  | ONE.        |  |  |
|                                                     | 106.74                                    | 0.50)<br>3.50                                                                                                                                                                                                                   | \$5                                           | 77.74       | m 273 7     |  |  |
| -6                                                  | 104.44<br>104.24<br>103.84<br>103.64      | Moderately strong, pale by  5.80  6.00 Soft, orange/brown sandy  5.40) 6.40 Stiff, dark grey, silty, sandy  6.40 Moderately weak, grey November 1000  Strong, fresh light grey Logony  Moderately weak, dark golimestone bands. | y CLAY.<br>dy CLAY.<br>fUDSTONE.<br>IMESTONE. |             |             |  |  |
| Paris a Parama and Water Observation                |                                           | Chiallia                                                                                                                                                                                                                        | Was add d                                     | Comp        | ral Danada  |  |  |
| Boring Progress and Water Observation               |                                           | Chiselling To Hours                                                                                                                                                                                                             | Water Added                                   | Gene        | ral Remarks |  |  |
| Date Time Depth Wa                                  | ater Depth Dia. mm                        | From To Hours                                                                                                                                                                                                                   | From To                                       |             |             |  |  |
| All dimensions in metres Contr<br>Scale 1:50 Plant: | ractor : Site Investigation<br>: Services | Method:                                                                                                                                                                                                                         | Method: Logged By: Approved                   |             |             |  |  |

|                            |              | BOREHOLE No<br>BH111         |                                      |                  |
|----------------------------|--------------|------------------------------|--------------------------------------|------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                  |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>110.24mATBM | Co-ordinates:<br>E 453,758 N 225,305 | SLR              |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2 |

| SAMPL                     | ES & '     | <b>TEST</b>  | S              |              |                  |                                       |                           |                       | STRAT                            | A                  |                  |             |                |             | ent        |
|---------------------------|------------|--------------|----------------|--------------|------------------|---------------------------------------|---------------------------|-----------------------|----------------------------------|--------------------|------------------|-------------|----------------|-------------|------------|
| Depth                     | Type<br>No | Test<br>Type | Test<br>Result | Water        | Reduced<br>Level | Legend                                | Depth<br>(Thick-<br>ness) |                       |                                  | DES                | CRIPTION         | ٧           |                |             | Instrument |
| 9                         |            |              |                |              |                  |                                       | (3.40)                    | Moderate<br>limestone | ly weak, de<br>bands. <i>(co</i> | ark gre<br>ontinue | y silty MU<br>d) | IDSTÓNI     | E, with occasi | onal        |            |
| 10                        |            |              |                |              | 99.84            |                                       | 10.40                     |                       |                                  |                    |                  |             |                |             |            |
|                           |            |              |                |              | 99.54            |                                       | 10.70                     |                       | ly strong,                       | 1000               | 157              | TONE.       |                |             |            |
|                           | ,          | ĺ            |                |              |                  | × ×                                   | (0.50)                    | Stiff, dar            | k grey silty                     | CLAY               | Υ.               |             |                |             |            |
| -11                       |            |              |                |              | 99.04            | x _x                                  | 11.20                     | Madant                | le otrono                        | M                  | TIDETON          |             |                |             |            |
|                           |            |              |                |              | 98.74            |                                       | 11.50                     |                       | ely strong,                      | *                  |                  | Е.          |                |             |            |
| -12                       |            |              |                |              |                  | × × × × × × × × × × × × × × × × × × × | (2.00)                    | Stiff, dar            | k grey silty                     | CLA                | τ,               |             |                |             |            |
| -13                       |            |              |                |              | 96.74            | × × × × × × × × × × × × × × × × × × × | 13.50                     | Strong, f             | resh grey L                      | IMES               | TONE, wit        | th occasio  | onal mudstone  | bands.      |            |
| - 14                      |            |              | . 1            |              | 96.24            |                                       | 14.00                     |                       |                                  | 2007-2017          |                  |             |                |             | ं          |
| -15                       |            |              |                |              |                  |                                       |                           |                       |                                  | Boreh              | nole compl       | ete at 14.0 | 00m            |             | 9          |
| Boring Pro                | ogress ar  | d Wate       |                |              | Ca               | sing                                  |                           | Chise                 | lling                            | T                  | Water /          | Added       | Gene           | ral Remarks |            |
| Date                      | Time       | De           | pth '          | Water<br>Dpt | Depth            | Dia. m                                | m Fro                     | m To                  | Ho                               | urs                | From             | То          |                |             |            |
| Boring Pro Date  All dime |            |              |                |              |                  |                                       |                           |                       |                                  |                    |                  |             |                |             |            |

|                             | 1            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH112 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.63mATBM | Co-ordinates:<br>E 453,748 N 225,256 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| Ai                        | uicy La   | inum   | Site Mi                               | JIII  | oring D               | or choi      | c msta                    | natio     | 113            |                 |                           |          |             | 1 of 2      |                         |
|---------------------------|-----------|--------|---------------------------------------|-------|-----------------------|--------------|---------------------------|-----------|----------------|-----------------|---------------------------|----------|-------------|-------------|-------------------------|
| SAMPL                     | ES & T    | ESTS   |                                       |       |                       |              |                           | 1-21-2-10 | dishedinoso    |                 | ,ut                       |          |             |             |                         |
| Depth                     | Туре      | Test   | Test<br>Result                        | Water | Reduced<br>Level      | Legend       | Depth<br>(Thick-<br>ness) |           |                | RATA<br>DE      | SCRIPTIO                  | N        | - ********* |             | Instrument/<br>Backfill |
|                           |           |        |                                       |       | 109.53                |              | 0.10                      | Gras      | ss over bro    | wn SAND         | (TOPSOIL                  | .).      |             |             |                         |
| E                         |           |        |                                       |       | 100.10                | ===          | (0.40)<br>0.50            | Firm      | n, brown s     | andy CLAY       | <i>(</i> .                |          |             |             | П                       |
| [                         |           | 0      |                                       |       | 109.13                | TT           | 0.30                      | Mod       | derately str   | rong, cream     | LIMESTO                   | NE.      |             |             |                         |
| į.                        | 1 1       |        |                                       |       |                       | $\perp$      |                           |           | •              |                 |                           |          |             |             |                         |
| <u>-</u> 1                | 1 1       |        |                                       |       | 1                     | $\Box$       | E                         |           |                |                 |                           |          |             |             |                         |
| <u> </u>                  |           |        |                                       |       |                       |              | (1.50)                    |           |                |                 |                           |          |             |             |                         |
| F                         |           |        |                                       |       |                       | H            | Ē                         |           |                |                 |                           |          |             |             |                         |
| E                         |           |        |                                       |       |                       | 7            | -                         | 1         |                |                 |                           |          |             |             | 2                       |
| -2                        | 1         | ĺ      |                                       |       | 107.63                |              | 2.0                       |           | v etropa o     | ream LIMI       | STONE                     |          |             |             |                         |
| E                         | 1 1       |        |                                       |       |                       | $\Box$       | E                         | Ver       | y surong, c    | icam Livii      | STONE.                    |          |             |             |                         |
| ‡                         |           |        |                                       |       |                       | 井            | (0.80)                    |           |                |                 |                           |          |             |             |                         |
| ‡                         | 1 1       |        |                                       |       | 106.83                |              | 2.8                       | 0         |                |                 |                           |          |             |             |                         |
| -3                        | 1 *       |        |                                       |       | 106.63                |              | 3.0                       | VI        |                | sandy LIM       |                           |          |             |             | Ш                       |
| ţ"                        |           |        |                                       | 1     |                       | Щ            | ţ                         | Stro      | ong, brown     | /cream LIN      | ÆSTONE.                   |          |             |             |                         |
| E                         | 1         |        |                                       |       |                       |              | -                         |           |                |                 |                           |          |             |             | 目                       |
| <b>!</b>                  |           | 6      |                                       |       |                       |              | (1.30)                    |           |                |                 |                           |          |             |             | 丨目                      |
| E.,                       |           |        |                                       |       |                       | 1            | 1                         |           |                |                 |                           |          |             |             |                         |
| F*                        | 1 1       |        |                                       |       | 105.33                | $\Box$       | 4.3                       |           |                |                 |                           |          |             |             |                         |
| ţ                         |           |        |                                       |       | 105.13                | 1            | 4.5                       |           | derately st    | rong, brow      | n sandy LIN               | MESTON   | E.          |             | 目                       |
| E                         | 1 1       |        |                                       | 6     | 104.93                | ПП           | 4.7                       | 0 Stro    |                | LIMESTO         |                           |          |             |             |                         |
| -                         | 1 1       |        |                                       |       | 104.83                |              | -                         | Stre      | ak, brown      | sand LIME       | STONE.                    |          |             |             | 1目                      |
| F <sup>5</sup>            |           |        |                                       |       | 104.53                | ++           | 5.1                       | U         |                | •               | sandy LIM                 | ESTONE   |             | 2.7         | ┨                       |
| E                         |           |        |                                       |       | 104.23                |              | 5.4                       | 0         | Trefride Sin : |                 |                           |          |             |             | 1 目                     |
| -                         |           |        |                                       | l.    | 104.03                | H            | 5.6                       |           |                |                 | grey LIME:<br>IMESTON     |          |             | Willia      | 十目                      |
| E                         |           |        |                                       |       | 103.83                | <del> </del> | 5.8                       | 0 Fir     | n, light bro   | own silty S.    | AND.                      |          |             |             | 1目                      |
| -6                        |           |        |                                       |       | 103.63                |              | 6.0                       | 0 soft    | to firm, d     | ark grey/bl     | ack CLAY.<br>slightly san | dv MUDS  | STONE       |             | 1 目                     |
| E                         |           | 1      |                                       |       |                       |              | (0.70)                    |           | <b></b>        |                 | g,                        | .,       |             |             |                         |
| -                         |           |        |                                       |       | 102.93                |              | 6.7                       | 0         |                |                 |                           |          |             |             | 1                       |
| F                         |           |        |                                       |       |                       |              | -                         | Stro      | ong, grey I    | IMESTON         | ΝE,                       |          |             |             | ᅦ                       |
| -7                        | E         |        |                                       |       | 102.63                |              | 7.0                       | Mo        | derately st    | rong, grev      | slightly san              | dv MUDS  | STONE.      | 2.75 (2.75) | 七目                      |
| <u> </u>                  |           |        |                                       |       | 102.23                |              | (0.40)<br>7.4             | 0         | (35)           |                 | .,                        | ,        |             |             |                         |
| Ę.                        |           |        |                                       |       |                       | $\Box$       |                           | Stre      | ong, grey l    | <b>LIMESTON</b> | JE.                       | *        |             |             | 1.目                     |
| <b>\$!</b>                |           |        |                                       |       | 101.83                |              | (0.40)<br>7.8             |           |                |                 | 11-1-1                    | L. MITTO | TONE        |             |                         |
|                           | 11        |        |                                       | _     | 101.63                |              | 8.0                       |           |                |                 | slightly san              |          |             |             |                         |
| Boring Pro                |           |        |                                       |       |                       | sing         |                           |           | Chiselling     |                 |                           | Added    | Gene        | eral Remark | S                       |
| Date                      | Time      | Dept   | h Wat                                 | )ť    | Depth                 | Dia. m       | m Fr                      | om        | То             | Hours           | From                      | То       | 4           |             |                         |
| nre                       |           |        |                                       | - 8   |                       |              |                           |           |                |                 |                           |          |             |             |                         |
| ž                         |           |        |                                       |       |                       | i i          |                           | 1         |                |                 |                           |          | []          |             |                         |
| Boring Pro Date  All dime |           |        | 9)<br>()                              |       |                       |              |                           |           |                |                 |                           |          | H           |             |                         |
| 0                         |           |        |                                       | 1     |                       |              |                           |           |                |                 |                           |          |             |             |                         |
| ) Sec                     |           |        |                                       |       |                       |              |                           |           |                |                 |                           |          |             |             |                         |
|                           |           |        |                                       |       |                       |              | Щ                         |           | V              |                 | <u> </u>                  |          |             |             |                         |
| All dime                  | nsions in | metres | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       | : Site Inv<br>Service |              | n                         | Meth      | hod:           |                 |                           |          | Logged By:  | Approve     | d By:                   |
| <u> S</u>                 | cale 1:50 | - 65   | Plant:                                |       | 3CI VICE              | 3            |                           |           |                |                 |                           |          |             |             |                         |

|                             | )            | BOREHOLE LOG                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOREHOLE No<br>BH112 |
|-----------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              | To the second se |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.63mATBM | Co-ordinates:<br>E 453,748 N 225,256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet:<br>2 of 2     |

| Ai            | ratey L                  | andi         | ili Site ivi      | onit  | oring B          | orenoi          | e instai                  | iatio  | ns         |       |            |              |      |        | 2 of 2     |                         |
|---------------|--------------------------|--------------|-------------------|-------|------------------|-----------------|---------------------------|--------|------------|-------|------------|--------------|------|--------|------------|-------------------------|
| SAMPL         | ES &                     | ΓEST         | S                 | L     |                  |                 |                           |        | STE        | RATA  |            |              |      | 203    |            | _ ent/                  |
| Depth         | Type<br>No               | Test<br>Type | Test<br>Result    | Water | Reduced<br>Level | Legend          | Depth<br>(Thick-<br>ness) | X<br>V |            | DE    | SCRIPTIO   | N            |      |        |            | Instrument/<br>Backfill |
| 9             |                          |              |                   |       |                  |                 |                           |        |            | Bore  | ehole comp | lete at 8.00 | Om   |        |            |                         |
| -10           |                          |              |                   |       |                  |                 |                           |        |            |       |            |              |      |        |            |                         |
| -11           |                          |              |                   |       | 5                |                 |                           |        |            |       |            |              | 12   |        |            |                         |
| -13           |                          |              |                   |       |                  |                 |                           |        |            |       |            |              |      |        |            |                         |
| -14           |                          |              |                   |       |                  |                 |                           |        |            |       |            |              |      |        |            |                         |
| -<br>-15<br>- |                          |              |                   |       |                  |                 |                           |        |            |       |            |              |      |        |            |                         |
| Boring Pr     |                          | -            | er Observati      | ons   | Cas              | ing             |                           | (      | Chiselling |       | Water      | Added        |      | Gene   | ral Remark | s                       |
| Date          | Time                     |              | pth Wa            |       | Depth Site Inv   | Dia. m          |                           | Meth   | To         | Hours | From       | То           |      | ad De- | <u> </u>   | Dev                     |
|               | ensions ir<br>Scale 1:50 |              | s Contr<br>Plant: | actor | Site Inv         | estigation<br>S | n                         | Meth   | nod:       |       |            |              | Logg | ed By: | Approved   | Ву:                     |

|                             |              | BOREHOLE No<br>BH113         |                                      |                  |
|-----------------------------|--------------|------------------------------|--------------------------------------|------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              | 4-4-4                                |                  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.40mATBM | Co-ordinates:<br>E 453,737 N 225,223 | SLR 🥒            |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   | S                                    | Sheet:<br>1 of 3 |

| A        | raiey L    | andi   | III SI | te Mo            | nite    | oring B                | orenoie         | Instai                 | ıatıc | ons          |             |          |       |     |          | 1 of 3      |                         |
|----------|------------|--------|--------|------------------|---------|------------------------|-----------------|------------------------|-------|--------------|-------------|----------|-------|-----|----------|-------------|-------------------------|
| SAMPI    | LES &      | ΓEST   | S      |                  |         |                        |                 |                        |       | STF          | RATA        |          |       |     |          |             | Zu.Z                    |
| Depth    | Type<br>No | 1000   |        | t<br>ilt         | Water   | Reduced<br>Level       | Legend (T       | Depth<br>hick-<br>ess) |       |              | DE          | SCRIPTIC | N     |     |          |             | Instrument/<br>Backfill |
|          |            |        |        |                  |         | 109.30                 | 74.14           | 0.10                   | TO    | P SOIL       | IMESTON     | E.       |       |     |          |             |                         |
|          |            |        |        |                  | 9       |                        |                 |                        |       | - 0          |             |          |       |     |          |             |                         |
|          | 1          |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -1       |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        |        |                  |         |                        | 井井              |                        |       |              |             |          |       |     |          |             |                         |
|          |            | ļ      |        |                  | 3       |                        | 田               |                        |       |              |             |          |       |     |          |             |                         |
| -2       |            | ĺ      |        |                  |         |                        | 井井              |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        |        |                  | ar .    |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -3       |            |        | i i    |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          | 20         |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| Ę        |            |        |        |                  |         |                        | 田               | 7.10)                  |       |              |             |          |       |     |          |             |                         |
| -4       |            |        |        |                  |         |                        | 开手              |                        |       |              |             |          |       |     |          |             |                         |
| [        |            |        | Ė      |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        | ic .   |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -5       |            |        |        |                  |         |                        | 井井              |                        |       |              |             |          |       |     |          |             |                         |
| -        |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| [        |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -6       |            |        |        |                  |         |                        | 异               |                        |       |              |             |          |       |     |          |             |                         |
| Ě        |            |        |        | ×                |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -        |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
| -7       |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             | •                       |
| E'       |            |        |        |                  |         | 102.20                 |                 | 7.20                   | M     | nderately st | rong, grey  | MUDSTO   | NF    |     | Ži.      | 150010 - 50 |                         |
|          |            |        |        |                  |         |                        |                 |                        |       |              | - oB. 6. 6. |          |       |     |          |             |                         |
| Ē        |            |        |        |                  | 14      |                        |                 | (1.30)                 |       |              |             |          |       |     |          |             |                         |
| Boring P | rogress ar | d Wate | er Obs | ervatio          | ns      | Ca                     | sing            |                        |       | Chiselling   |             | Water    | Added |     | Gener    | ral Remark: | 5                       |
| Date     | Time       | De     | pth    | Wate<br>Dp       | er<br>t | Depth                  | Dia. mm         | Fro                    | m     | То           | Hours       | From     | То    | 4   |          |             |                         |
|          |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        |        |                  |         |                        |                 |                        |       |              |             |          |       |     |          |             |                         |
|          |            |        |        |                  |         |                        |                 |                        |       | 8            |             |          |       |     |          |             |                         |
|          |            |        |        |                  |         |                        |                 |                        |       | 7            |             |          |       |     |          |             |                         |
|          | ensions in |        |        | Contra<br>Plant: | ctor    | : Site Inv<br>Service: | estigation<br>s | Ц                      | Met   | hod:         |             | L        |       | Log | gged By: | Approved    | Ву:                     |

|                             | BOREHOLE LOG |                              |                                      |                  |  |  |  |  |  |  |  |
|-----------------------------|--------------|------------------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|
| Client:<br>Viridor Waste Ma | nagement     | ac i oo u ana axe daa        |                                      |                  |  |  |  |  |  |  |  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.40mATBM | Co-ordinates:<br>E 453,737 N 225,223 | SLR 🎤            |  |  |  |  |  |  |  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   | <u> </u>                             | Sheet:<br>2 of 3 |  |  |  |  |  |  |  |

| SAMPL      | ES &                   | TEST         | S              |       |                       |                  |                           |          | STE          | RATA                  |                   |             |            | te            |
|------------|------------------------|--------------|----------------|-------|-----------------------|------------------|---------------------------|----------|--------------|-----------------------|-------------------|-------------|------------|---------------|
| Depth      | Type<br>No             | Test<br>Type | Test<br>Result | Water | Reduced<br>Level      | Legend           | Depti<br>(Thick-<br>ness) | h        |              | DE                    | SCRIPTIO          | N           |            | Incfriment/   |
|            |                        |              |                |       |                       |                  |                           | Mo       | derately str | rong, grey M          | MUDSTON           | E. (contin  | nued)      |               |
|            | 1                      | Y Y          |                |       | 100.90                |                  | 8.5                       | 0        |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       |                  |                           | Dar      | k grey MU    | DSTONE.               |                   |             |            |               |
| 9          |                        | l å          |                |       |                       |                  | (1.00)                    |          |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       |                  | (2.00)                    |          |              |                       |                   |             |            |               |
|            |                        |              |                |       | 99.90                 |                  | 9.5                       | 0        |              | вистом                | т.                |             |            |               |
|            |                        |              |                |       |                       |                  | (0.50)                    | 6733 635 | ong, grey L  | IMESTON               | E.                |             |            |               |
| 10         | 1                      |              |                |       | 99.40                 |                  | 10.0                      | Das      | rk grey CL   | AV                    |                   |             |            |               |
|            |                        |              |                |       | 99.00                 |                  | (0.40)<br>10.4            | 0 0      | K grey CL    | <b>A</b> 1.           |                   |             |            |               |
|            |                        |              |                |       | 77.00                 |                  | 77 H                      | Stro     | ong, grey L  | IMESTON               | E.                |             |            |               |
|            |                        |              | 28             |       |                       |                  | (0.60)                    |          |              |                       |                   |             |            |               |
| 11         |                        | 8            |                |       | 98,40                 | Adicases obstant | 11.0                      |          | ff, dark gre | y silty CLA           | ·Υ                | 55.         |            | 100 - 12      |
|            |                        |              |                |       | 98.00                 | × -× -           | (0.40)<br>11.4            | 0        |              |                       |                   |             |            |               |
|            |                        |              |                | 1     | 97.90                 |                  | 11.5                      | OL Str   | ong, grey L  | IMESTON<br>AY interbe | E.<br>dded with s | strong, gre | y LIMESTO  | ONE.          |
|            |                        |              |                | 1     |                       | TI               |                           | 500      |              |                       | 200.00            | 0,0         | •          |               |
| 12         |                        | į.           |                |       |                       |                  | Ē                         |          |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       | H                | -                         | ě.       |              |                       |                   |             |            |               |
|            |                        | 50           |                |       |                       |                  | (2.00)                    |          |              |                       |                   |             |            |               |
| 40         |                        |              |                | 1     |                       | FF               | È                         |          |              | £0                    |                   |             |            |               |
| 13         |                        |              |                |       |                       |                  | 1                         |          |              |                       |                   |             | <b>2</b> 0 |               |
|            |                        |              |                |       | 95.90                 |                  | 13.5                      | 0        |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       |                  | ŧ                         | Str      | ong, grey I  | IMESTON               | IE.               |             |            |               |
| 14         |                        |              |                |       |                       | <b>#</b>         | (0.70)                    |          |              |                       |                   | •           |            |               |
|            |                        |              |                |       | 95.20                 | × -×-            | 14.2                      | Ve       | ry stiff, da | rk grey silty         | CLAY.             |             |            |               |
|            |                        |              |                |       |                       | <u> </u>         | ŧ                         | 0.000    |              |                       | _                 |             |            |               |
|            |                        |              | #2:            |       | i)                    | × ×              | ŧ                         |          |              |                       | =:                |             |            |               |
| 15         |                        |              |                |       |                       | × ×              | (1.80)                    | ĺ        |              |                       |                   |             |            |               |
|            |                        |              |                | 38    |                       | 2 _ x _          | ŧ`                        |          |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       | × ×              | <u>{</u>                  |          |              |                       |                   |             |            |               |
|            |                        |              | 9              |       | 93.40                 | ×_×              | 16.0                      | 10       |              |                       |                   |             |            |               |
| Boring Pro | gress ar               | nd Wate      | r Observati    | ons   |                       | sing             | 1                         |          | Chiselling   |                       | Water             | Added       | Ge         | neral Remarks |
| Date       | Time                   | -            |                | ter   | Depth                 | Dia. m           | m Fr                      | om       | То           | Hours                 | From              | To          |            |               |
|            |                        |              |                |       |                       |                  |                           |          |              |                       |                   |             | 1          |               |
| i i        |                        |              |                | 3.4   |                       |                  |                           |          |              |                       |                   |             |            |               |
|            |                        |              | İ              |       |                       |                  |                           |          |              |                       |                   |             |            |               |
|            |                        | 14.          | 1              |       |                       |                  |                           |          |              |                       |                   |             |            |               |
|            |                        |              |                |       |                       |                  |                           |          |              |                       |                   |             |            |               |
| 411.11     |                        |              |                |       | 01 1                  | <u> </u>         | Щ                         | 1.5      |              |                       |                   | <u></u>     |            |               |
| All dime   | nsions in<br>cale 1:50 |              | s Contr        |       | : Site Inv<br>Service | estigatio        | n                         | Met      | hod:         |                       |                   |             | Logged By  | : Approved I  |

|                             | )            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH113 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.40mATBM | Co-ordinates:<br>E 453,737 N 225,223 | SLR 🥒                |
| Project: Ardley Landfill S  | Site Monitor | ing Borchole Installations   |                                      | Sheet:               |

| A                         | uicy D                 | anui         | 51           | ic ivio                                |         | Jing D                | or cho.        | e mstat                   |           | ,,,,                     |                  |           |              |            | 3 of 3     |                         |
|---------------------------|------------------------|--------------|--------------|----------------------------------------|---------|-----------------------|----------------|---------------------------|-----------|--------------------------|------------------|-----------|--------------|------------|------------|-------------------------|
| SAMPL                     | ES & T                 | ΓEST         | S            |                                        | L       |                       |                |                           |           | STR                      | RATA             |           |              |            |            | ent                     |
| Depth                     | Type<br>No             | Test<br>Type | Test<br>Resu | lt                                     | Water   | Reduced<br>Level      | Legend         | Depth<br>(Thick-<br>ness) |           |                          |                  | SCRIPTIO  |              |            |            | Instrument/<br>Backfill |
| 17                        |                        |              |              |                                        |         |                       |                |                           | Mo<br>LIN | derately str<br>MESTONES | ong, grey N<br>S | MUDSTON   | E interbed   | ded with   |            |                         |
| -18                       |                        |              | P            |                                        |         |                       |                | (4.00)                    |           |                          |                  |           |              |            |            |                         |
| -19                       |                        |              |              | ************************************** |         |                       |                |                           |           |                          |                  |           |              |            |            |                         |
| -20<br>-                  |                        |              |              |                                        |         | 89.40                 |                | 20.00                     |           |                          | Bore             | hole comp | lete at 20.0 | 90m        |            |                         |
| -21                       |                        |              |              |                                        |         |                       |                |                           |           |                          |                  |           |              |            |            |                         |
| -22                       |                        |              |              |                                        |         |                       |                |                           |           |                          |                  |           |              |            |            | 1                       |
| -23                       |                        |              |              |                                        |         |                       |                |                           |           |                          |                  |           |              |            |            |                         |
| Boring Pro                | ogress ar              | nd Wat       | er Obs       | servatio                               | ns      | Cas                   | sing           |                           |           | Chiselling               |                  | Water     | Added        | Gene       | ral Remark | s                       |
| Date                      | Time                   | De           | epth         | Wat<br>Dp                              | er<br>t | Depth                 | Dia. n         | ım Fro                    | m         | То                       | Hours            | From      | То           |            |            |                         |
| Boring Pro Date  All dime |                        |              |              |                                        |         |                       |                |                           |           |                          | 3                | Š         |              |            |            | 32                      |
| All dime                  | ensions i<br>Scale 1:5 |              | es           | Contra<br>Plant:                       | actor   | : Site Inv<br>Service | estigatio<br>s | מפ                        | Me        | thod:                    |                  |           |              | Logged By: | Approved   | d By:                   |

|                             |              | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH114 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     | W                            |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.66mATBM | Co-ordinates:<br>E 453,765 N 225,222 | SLR ノ                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| Aiu         | iley L     | anum           | Site Mi        | лин    | CTD ATA          |                         |                                                          |          |            |            |           | Š.                    | 1 of 2  |                |
|-------------|------------|----------------|----------------|--------|------------------|-------------------------|----------------------------------------------------------|----------|------------|------------|-----------|-----------------------|---------|----------------|
| SAMPLE      | S & T      | ESTS           |                | ь      |                  |                         |                                                          |          | STRA       | TA         |           | -                     |         |                |
| Depth       | Type<br>No | Test<br>Type R | Test<br>tesult | Water  | Reduced<br>Level | Legend                  | Depth<br>(Thick-<br>ness)                                |          |            |            | SCRIPTI   |                       |         |                |
|             |            |                |                |        | 109.16           | 1. 1.1. 1.<br>1.1. 1.1. | (0.50)<br>0.50                                           |          | er gravel  | ly, sand   | y TOPSO   | IL. Sand is           | s fine. |                |
|             |            |                |                |        | 107.10           | Ť                       |                                                          | Weak, c  | ream LIM   | ESTON      | √E.       |                       |         | :53            |
| 1           |            |                |                |        |                  | H                       | (1.00)                                                   |          |            |            |           |                       |         |                |
|             |            |                |                |        | 108.16           | 出                       | 1.50                                                     | Moderat  | ely strong | g, cream   | LIMEST    | ONE.                  | 6.      |                |
| 2           |            |                |                |        | 107.66           | 岸                       | (0.50)                                                   |          |            |            |           | n ererov              |         |                |
| 58<br>2     |            |                |                |        | 107.36           | 占                       | 2.30                                                     | Modera   |            |            | , cream L | MESTON<br>ONE.        | E.      |                |
|             |            |                |                |        | 106.96           | H                       | (0.40)<br>2.70                                           | -        |            |            |           |                       |         |                |
| 3           |            |                |                |        |                  | 井                       | Ė                                                        | i        |            |            |           |                       |         |                |
|             |            |                |                |        | ļ.               | 井                       | (1.30)                                                   |          |            |            |           |                       |         |                |
| E           |            | ŀ              |                |        | 105.66           | 耳                       | 4.00                                                     |          |            |            |           |                       |         |                |
| ×           |            |                |                |        |                  | 井                       |                                                          | Very str | ong, crea  | m LIMI     | ESTONE.   |                       |         | ŀ              |
|             |            |                |                |        |                  | 莊                       |                                                          |          |            |            |           |                       |         |                |
| 5           |            |                |                |        |                  |                         | (2.30)                                                   |          |            |            |           |                       |         | ŀ              |
|             |            |                |                |        |                  |                         | ]                                                        |          |            |            |           |                       |         | ]:             |
| 3           |            |                |                |        |                  | 井                       | 1                                                        |          |            |            |           |                       |         |                |
|             |            |                |                |        | 103.36           |                         | 6.30                                                     | Light br | own, silty | y, fine sa | and.      | 1000                  |         | ·              |
|             |            |                |                |        |                  |                         | (0.50)                                                   | Firm, da |            |            |           |                       |         |                |
| 7           |            |                |                |        | 102.66           | 豆                       | 7.00                                                     | Strong,  | grey LIM   | ESTON      | ΙĒ.       |                       |         |                |
|             |            |                |                |        |                  | 井                       | (1.00)                                                   |          |            |            |           |                       |         |                |
|             |            |                |                |        | 101.66           |                         | 8.00                                                     |          |            |            |           |                       |         |                |
| Boring Prog |            |                |                |        |                  | sing                    | _                                                        |          |            |            |           | 2555 DOC 485 CT 345 P | Ge      | eneral Remarks |
| Date        | Time       | Depti          | 1 Wat<br>Dp    | ī ļ    | Depth            | Dia. m                  | m Fro                                                    | m 1      | 0   H      | Hours      | From      | To                    | 1       |                |
|             |            |                |                |        |                  |                         |                                                          |          |            |            |           |                       |         |                |
|             |            |                |                |        |                  |                         |                                                          |          |            |            | *         |                       | 4       |                |
| All dimen   | ciona !-   | metros         | Cont           | nota - | Cita I           | nation!                 | <u></u>                                                  | Math - 3 |            |            |           |                       | II 15   |                |
|             | ale 1:50   |                | Plant:         | icior  | Services         | S                       | (1.30)   4.00   Very strong, cream LIMESTONE.     (2.30) |          |            |            |           |                       |         |                |

|                               | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH114 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>109.66mATBM | Co-ordinates:<br>E 453,765 N 225,222 | 「SLR ノ               |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

| Project:                     | rdley L    | andfi        | ill Site M       | onit   | oring B          | Sheet     | 2 of 2                                 |          |            |       |            |             |           |              |            |
|------------------------------|------------|--------------|------------------|--------|------------------|-----------|----------------------------------------|----------|------------|-------|------------|-------------|-----------|--------------|------------|
| SAMPI                        | ES & T     | TEST:        | S                |        |                  | 10        |                                        |          | ST         | RATA  |            |             |           |              | Tà:        |
| Depth                        | Type<br>No | Test<br>Type | Test<br>Result   | Water  | Reduced<br>Level | Legend    | Depth<br>(Thick-<br>ness)              |          |            |       | ESCRIPTIO  | ON          |           |              | Instrument |
| -9                           |            |              | ٠                |        |                  |           |                                        |          |            | Во    | rehole com | plete at 8. | 00m       |              |            |
| -10                          |            |              |                  |        |                  |           |                                        |          |            |       |            |             |           |              |            |
| -11                          | 10,15      |              |                  |        |                  |           |                                        |          |            |       |            |             |           |              |            |
| -12                          |            |              |                  |        |                  |           |                                        |          |            |       |            |             |           |              |            |
| 13                           |            |              |                  |        |                  |           |                                        |          |            |       |            |             |           |              |            |
| 14                           |            |              |                  |        |                  |           |                                        |          |            |       |            |             |           |              |            |
| 15                           |            | 0.000        |                  |        |                  |           | -                                      |          |            |       |            |             |           |              |            |
| Boring Pro                   | ogress and | Water        | Observatio       | ns T   | Casi             | ng        | ii ii ii ii ii ii ii ii ii ii ii ii ii | <u> </u> | Chiselling |       | Water      | Added       | ][ Ge     | neral Remark |            |
| Date                         | Time       | Dep          |                  | er     | Depth            | Dia. mn   | Fro                                    |          | To         | Hours | From       | To          |           | iciai remark |            |
| Boring Pro<br>Date All dimer |            |              |                  |        |                  |           |                                        |          |            |       | 8          |             |           |              |            |
| All dimer                    | nsions in  | metres       | Contra<br>Plant: | ctor : | Site Investiges  | stigation |                                        | Met      | hod:       |       |            |             | Logged By | Approved     | Ву:        |

|                             | . 1          | BOREHOLE LOG                           |                                        | BOREHOLE No<br>BH115 |
|-----------------------------|--------------|----------------------------------------|----------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     | 11000 1100 1100 1100 1100 1100 1100 11 | ************************************** |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.70mATBM           | Co-ordinates:<br>E 453,815 N 225,219   | SLR >                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations             | ,                                      | Sheet:<br>1 of 2     |

| Ar                         | dley L                 | andfi        | Il Site M        | 1 01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |            |                                      |             |                              |          |           |                |             |     |
|----------------------------|------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|--------------------------------------|-------------|------------------------------|----------|-----------|----------------|-------------|-----|
| SAMPL                      | ES &                   | TEST!        | 3                | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STRATA  Reduced Level Legend (Thickness)  Depth (Thickness)  DESCRIPTION |            |                                      |             |                              |          |           |                |             |     |
| Depth                      | Type<br>No             | Test<br>Type | Test<br>Result   | STRATA  Reduced Legend Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick Chick C |                                                                          |            |                                      |             |                              |          |           | Instrum        |             |     |
|                            |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.40                                                                   | 77 77      | 0.30                                 | Grass over  | ying TOPSO                   | IL.      |           |                |             |     |
| -1<br>-2<br>-3<br>-4<br>-6 |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105.50                                                                   |            | (2.20)<br>(2.30)<br>(2.30)<br>(0.50) | Fresh looks | grey to buff veathered silt. | LIMESTON | ered LIME | Icareous silts | tone        |     |
|                            |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.70                                                                   |            |                                      |             | muestone ba                  | ilds.    |           |                |             |     |
| Boring Pro                 | gress and              | d Water      | Observatio       | ns I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |            | 8.00                                 |             | 10                           | Water    | Added     | Com            | eral Ramad  |     |
| Date                       | Time                   | Dep          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |            | Fro                                  |             |                              |          |           | - Con          | o ar remark |     |
| Boring Pro Date  All dimer |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |            |                                      |             |                              |          |           |                |             |     |
| All dimer                  | nsions in<br>cale 1:50 |              | Contra<br>Plant: | ctor :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site Inve<br>Services                                                    | estigation |                                      | Method:     |                              |          |           | Logged By:     | Approved    | By: |

|                            | j            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH115 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     | 10.00.00                     | 10.00                                |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>109.70mATBM | Co-ordinates:<br>E 453,815 N 225,219 | SLR >                |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

|                    | uicy L                | anui         | iii Siu        | te Monitoring Borenoie Instanations |                                          |                    |                           |   |            |       |            |              |      | 2 of 2     |            |
|--------------------|-----------------------|--------------|----------------|-------------------------------------|------------------------------------------|--------------------|---------------------------|---|------------|-------|------------|--------------|------|------------|------------|
| SAMPL              | ES & 7                | ΓEST         | S              |                                     |                                          |                    |                           |   | ST         | RATA  |            |              | ent  |            |            |
| Depth              | Type<br>No            | Test<br>Type | Test<br>Result | t                                   | Reduced<br>Level                         | Legend             | Depth<br>(Thick-<br>ness) |   |            | DE    | SCRIPTIO   | N            |      |            | Instrument |
| -9                 |                       |              |                |                                     |                                          |                    |                           |   |            | Bor   | ehole comp | olete at 8.0 | 90m  |            |            |
| -10                |                       |              |                |                                     | 100                                      |                    |                           |   |            |       |            |              |      |            |            |
| -11                |                       |              |                |                                     |                                          |                    |                           |   |            |       |            |              |      |            |            |
| -12                | and the second        |              |                |                                     |                                          |                    |                           |   |            |       |            |              |      |            |            |
| -13                |                       |              |                |                                     |                                          |                    |                           |   |            |       |            |              |      |            |            |
| -14                |                       |              |                |                                     |                                          |                    |                           |   |            |       |            |              |      |            |            |
| -15                | gg                    |              |                |                                     | 60 E S S S S S S S S S S S S S S S S S S |                    |                           |   | 55         |       |            |              |      |            |            |
| Boring Pro         | gress an              | d Wate       | r Obser        | rvations                            | Ca                                       | sing               | <u> </u>                  | _ | Chiselling |       | Water      | Added        | Gene | ral Remark | s          |
| Date               | Time                  | Dep          |                | Water<br>Dpt                        | Depth                                    | Dia. m             | m Fro                     |   | To         | Hours | From       | То           |      |            |            |
| Boring Pro<br>Date |                       |              |                |                                     |                                          |                    |                           |   |            | 6     |            |              |      |            |            |
| All dimer          | nsions in<br>ale 1:50 |              | S C            | Contracto                           | or : Site Inv                            | Site Investigation |                           |   |            |       |            |              |      | Approved   | i By:      |

|                             | ]            | BOREHOLE LOG                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOREHOLE No<br>BH116 |
|-----------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.46mATBM | Co-ordinates:<br>E 453,865 N 225,216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLR ノ                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   | - Land to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat | Sheet:               |

| A                             | uicy L     | anui         | III SI      | te Mo        | шис   | Ji ilig D        | ig borenoie instanations |                           |                         |               |               |             |             | 1 of 2            |             |                         |
|-------------------------------|------------|--------------|-------------|--------------|-------|------------------|--------------------------|---------------------------|-------------------------|---------------|---------------|-------------|-------------|-------------------|-------------|-------------------------|
| SAMPL                         | ES &       | ΓEST         | S           |              |       |                  |                          |                           |                         | STI           | RATA          |             |             |                   |             | nt/                     |
| Depth                         | Type<br>No | Test<br>Type | Tes<br>Resu | t            | Water | Reduced<br>Level |                          | Depth<br>(Thick-<br>ness) |                         |               |               | SCRIPTIO    |             | 900 935 930<br>31 |             | Instrument/<br>Backfill |
|                               |            |              |             |              |       | 109 21           | 41 44                    |                           | Bro                     | ownish grey   | y, silty soil | with fragm  | ents of lin | nestone (TOPS     | SOIL).      |                         |
| -1<br>-2<br>-4                |            |              |             |              |       | 107.36           |                          | (1.85)                    | Sajhoi                  | prolite. Blo  | ocky, weath   | ered yellov | wish LIME   | y massive but     | soil        |                         |
| -6                            |            |              | ł           |              |       | 103.46           | Щ                        | 6.00                      |                         |               |               |             |             |                   |             | 】目                      |
| Ĕ                             |            |              |             |              |       |                  | -                        | ļ                         | Ha                      | ard, iron sta | ined LIME     | STONE.      |             |                   |             | 目                       |
| E                             |            |              |             |              |       |                  | 茁                        | (1.10)                    |                         |               |               |             |             |                   |             |                         |
| E                             |            |              |             |              |       | 1                |                          | }                         |                         |               |               |             |             |                   |             |                         |
| <del>_</del>                  |            |              |             |              |       | 102.36<br>102.26 | 土工                       | 7.10                      | 0 80                    | il/CLAY       |               |             |             |                   |             |                         |
| ≟[-<br>ŏ[                     |            |              |             |              |       | 102.20           |                          | }'· <del>-</del> '        |                         | irk grey, fre | sh LIMES      | TONE.       | 17.00       |                   |             | 1目                      |
| ε <u>ι</u>                    |            |              |             |              |       |                  | ЦŢ                       | (0.80)                    |                         |               | 9             |             |             |                   |             |                         |
| SE                            |            |              |             |              |       | 101.46           | Ш                        | 8.00                      |                         |               |               |             |             |                   |             | E                       |
| Boring Pro                    | gress ar   | d Wate       | er Obs      |              |       | Cas              | ing                      |                           |                         | Chiselling    |               | Water       | Added       | Gene              | eral Remark | s                       |
| Date                          | Time       | De           | pth         | Water<br>Dpt | r     | Depth            | Dia. m                   | m Fr                      | m                       | То            | Hours         | From        | То          |                   |             |                         |
| Boring Pro Date Date All dime |            |              |             |              |       |                  |                          |                           |                         |               |               |             |             |                   |             |                         |
| All dime                      | nsions i   | metre        |             |              | tor : | Site Inve        | estigation               | n                         | Met                     | thod:         |               | <u> </u>    | 4           | Logged By:        | Approve     | d By:                   |
| S. S.                         | cale 1:50  |              |             | Plant:       |       | Services         |                          |                           | Method: Logged By: Appr |               |               |             |             |                   | -7.         |                         |

|                               | J            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH116 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma   | nagement     | (3-84-6)                     |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>109.46mATBM | Co-ordinates:<br>E 453,865 N 225,216 | ーSLR ノ               |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

| A                                                                                           | rdley L                | andf         | ill Si      | te Moi             | e Monitoring Borehole Installations                                 |                  |         |                           |    |            |       |           |              |      | 2 of 2      |                         |
|---------------------------------------------------------------------------------------------|------------------------|--------------|-------------|--------------------|---------------------------------------------------------------------|------------------|---------|---------------------------|----|------------|-------|-----------|--------------|------|-------------|-------------------------|
| SAMPI                                                                                       | ES & T                 | ΓEST         | S           |                    | _                                                                   |                  |         |                           |    | ST         | RATA  |           |              |      |             | ent/                    |
| Depth                                                                                       | Type<br>No             | Test<br>Type | Tes<br>Resu | it<br>alt          | Water                                                               | Reduced<br>Level | Legend  | Depth<br>(Thick-<br>ness) | 16 |            | DE    | ESCRIPTIO | ON           |      |             | Instrument/<br>Backfill |
| 9                                                                                           |                        |              |             |                    |                                                                     |                  |         |                           |    |            | Вот   | ehole com | plete at 8.0 | 00m  |             |                         |
| -10                                                                                         |                        |              |             |                    |                                                                     |                  |         |                           |    |            |       |           |              |      |             |                         |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                        |              |             |                    |                                                                     |                  |         |                           |    |            |       |           |              |      |             |                         |
| 12                                                                                          |                        |              |             |                    |                                                                     | Ten di           |         |                           |    |            |       |           |              |      |             |                         |
| -13                                                                                         |                        |              |             |                    |                                                                     |                  |         |                           |    |            |       |           |              |      |             |                         |
| -14                                                                                         |                        |              |             |                    |                                                                     |                  |         |                           |    |            |       |           |              |      |             |                         |
| -15                                                                                         |                        | •            |             |                    |                                                                     |                  |         |                           |    |            |       |           |              |      | ts .        |                         |
| Boring Pro                                                                                  | ogress an              | d Wate       | r Obs       | ervations          | <u> </u>                                                            | Cas              | ing     | T                         | (  | Chiselling |       | Water     | Added        | Gene | ral Remarks | S                       |
| Boring Pro Date  All dime                                                                   | Time                   | Dep          | -           | Water<br>Dpt       |                                                                     | Depth            | Dia, mr | n From                    |    | To         | Hours | From      | То           |      |             | 202                     |
| All dime                                                                                    | nsions in<br>cale 1:50 |              |             | Contract<br>Plant: | ractor : Site Investigation : Services  Method: Logged By: Approved |                  |         |                           |    |            |       |           | Ву:          |      |             |                         |

|                             | )            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH117 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>109.00mATBM | Co-ordinates:<br>E 453,914 N 225,211 | SLR                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2     |

| AI            | uley L                 | anui         | iii Si      | tte Monitoring Borenoie Insta |       |                     |                 |                       |       | )113         |              |             | 1 of 2      |               |            |                         |
|---------------|------------------------|--------------|-------------|-------------------------------|-------|---------------------|-----------------|-----------------------|-------|--------------|--------------|-------------|-------------|---------------|------------|-------------------------|
| SAMPL         | ES &                   | TEST         | S           |                               |       |                     |                 |                       |       | STF          | RATA         |             |             | * ** <u>W</u> |            | ent/                    |
| Depth         | Type<br>No             | Test<br>Type | Tes<br>Resu | t<br>ilt                      | Water | Reduced<br>Level    | Legend (T       | Depth<br>hick-<br>ss) |       |              | DES          | SCRIPTIO    | N           |               |            | Instrument/<br>Backfill |
| 1 2 3 4 5 6 7 |                        |              |             |                               |       | 108.50              |                 |                       | Weban | ids of decor | nposed silt. | E/dark clay | , with inte | rone, with is |            |                         |
| Boring Pr     | rogress ar             | nd Wat       | er Obs      | servation                     | ns    | Ca                  | sing            | Π                     | -     | Chiselling   |              | Water       | Added       | Gene          | ral Remark | S                       |
|               | Time                   |              | pth         | Wate<br>Dpt                   |       | Depth               | Dia. mm         | Fro                   | m     | То           | Hours        | From        | To          |               | 9 9        |                         |
| Date All dim  | 72                     |              |             |                               |       |                     |                 |                       |       |              |              |             |             |               |            |                         |
| All dim       | ensions i<br>Scale 1:5 |              | s           | Contra<br>Plant:              | ctor  | Site Inv<br>Service | estigation<br>s |                       | Met   | thod:        |              | 13. 07      |             | Logged By:    | Approved   | d By:                   |

|                            | 1            | BOREHOLE LOG                 | 100                                  | BOREHOLE No<br>BH117 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              | 150                                  |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>109.00mATBM | Co-ordinates:<br>E 453,914 N 225,211 | ーSLR ノ               |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |

|                            |                      |              |               |                  |       |                       |                                       |                          |                |             |            |            |             |                              | 2 01 2     |                         |
|----------------------------|----------------------|--------------|---------------|------------------|-------|-----------------------|---------------------------------------|--------------------------|----------------|-------------|------------|------------|-------------|------------------------------|------------|-------------------------|
| SAMPLE                     | ES & T               | TEST         | S             |                  | L,    |                       |                                       |                          | 550            | STF         | RATA       |            |             |                              |            | ent/                    |
| Depth                      | Type<br>No           | Test<br>Type | Test<br>Resul | :<br>It          | Water | Reduced<br>Level      | Legena                                | Dept<br>(Thick-<br>ness) | h              |             | DE         | SCRIPTIO   | N           |                              |            | Instrument/<br>Backfill |
| 9                          |                      |              |               |                  |       | 99.90                 | × × × × × × × × × × × × × × × × × × × | 9.1                      | 0<br>SII<br>50 | LTSTONE v   | with clay  | 14.0       | 200 200 200 | (continued) ale and siltston | ne         |                         |
| -10<br>-                   |                      |              |               |                  |       |                       |                                       | (2.00)                   |                | erbeds.     |            |            |             |                              |            |                         |
| -11<br>-11                 |                      | APP          |               |                  |       | 97.50                 |                                       | 11                       |                |             |            |            |             |                              |            |                         |
| -12<br>-12                 |                      |              |               |                  |       | 97.10                 | × × × × × × × × × × × × × × × × × × × | (0.40)<br>11.            | iay). (Mic     | idle Marl?) |            |            |             |                              |            |                         |
| -13                        |                      |              |               |                  |       | 96.00                 |                                       | 13.                      | 00             |             | Bore       | ehole comp | lete at 13. | 00m                          |            |                         |
| -14                        |                      |              |               |                  |       |                       |                                       |                          |                |             |            |            |             |                              |            |                         |
| -15<br>-                   |                      |              |               | 1                |       |                       |                                       |                          |                |             |            |            |             |                              |            |                         |
| Boring Pro                 | gress a              | nd Wat       | er Obs        | ervatio          | ns    | Ca                    | sing                                  |                          |                | Chiselling  |            | Water      | Added       | Gene                         | ral Remark | s                       |
| Date                       | Time                 | De           | pth           | Wate<br>Dp       | er    | Depth                 | Dia. m                                | nm F                     | rom            | To          | Hours      | From       | То          |                              |            |                         |
| Boring Pro Date  All dimer |                      |              |               |                  |       |                       |                                       |                          |                |             |            |            |             |                              |            |                         |
| All dime                   | nsions i<br>cale 1:5 |              | s             | Contra<br>Plant: | ctor  | : Site Inv<br>Service | estigations                           | ก                        | Me             |             | Logged By: | Approved   | d By:       |                              |            |                         |

|                            | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH118 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>108.42mATBM | Co-ordinates:<br>E 453,964 N 225,207 | ーSLR ノ               |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   |                                      | Sheet:               |

| SAMPL      | ES &       | rest         | S              | ᆸ          | 2.20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | STRATA                                         | 1                                         | 75744753416242 | _  t        |
|------------|------------|--------------|----------------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------|-------------------------------------------|----------------|-------------|
| Depth      | Type<br>No | Test<br>Type | Test<br>Result | Water      | Reduced<br>Level | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth<br>(Thick-<br>ness) |                                                | DESCRIPTION                               |                | Instrument/ |
|            |            |              |                |            | 108.07           | 37 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35                      | TOPSOIL.                                       |                                           |                |             |
|            |            |              |                |            | 108.07           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33                      | Weathered, iron stain<br>laminae of highly dec | ed, yellowish grey LIMES<br>composed silt | TONE with rare | _           |
| 1          |            | 3            |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                         |                                                |                                           |                | ı           |
|            |            | 9            | ,              |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                |                                           |                |             |
| 2          |            | (80.0000000  |                | k:         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is .                      |                                                |                                           |                | ı           |
|            |            |              |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4.65)                    |                                                |                                           |                | ı           |
| 3          |            |              |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                         |                                                |                                           |                |             |
|            |            | Š            |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                |                                           |                |             |
| 1          |            |              |                |            | SE.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                         |                                                |                                           |                |             |
|            |            |              |                |            | 103.42           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.00                      |                                                |                                           |                |             |
| 5          |            |              |                |            | 102.92           | × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.50)                    | Weak zone, yellowish                           | h brown SILT.                             |                |             |
|            |            |              |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Iron stained, yellowis                         | sh grey LIMESTONE.                        |                |             |
| 6          | 1.0        |              |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1.20)                    |                                                |                                           |                |             |
| 7          |            |              |                |            | 101.72           | × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.70<br>7.00              | SILTSTONE, Dark                                | grey limestone at base of u               | pper marl.     |             |
|            |            | the sections |                |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 8                                              | Borehole complete at 7.00                 | m              |             |
| Boring Pro | gress an   | d Wate       |                |            | Car              | l F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                         | Chiselling                                     | Water Added                               | General Rema   | arks        |
| Date       | Time       | Dep          | oth Wa         | nter<br>pt | Depth            | Dia. mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 From                    | m To Hour                                      | s From To                                 | 1000           |             |
|            |            |              |                |            |                  | With the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                           |                                                |                                           |                |             |
| All dimen  |            |              |                |            | Site Inv         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Method:                                        |                                           |                |             |

|                               |              | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH119 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>107.76mATBM | Co-ordinates:<br>E 454,013 N 225,199 | SLR 🥒                |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 3     |

| Project:                                | rdley L                  | andfi        | ill Si      | te Mor            | nito  | oring B                    | oreho          | le Ir | ıstall                      | tallations Sheet: |             |          |             |           |           |              |                         |
|-----------------------------------------|--------------------------|--------------|-------------|-------------------|-------|----------------------------|----------------|-------|-----------------------------|-------------------|-------------|----------|-------------|-----------|-----------|--------------|-------------------------|
| SAMPI                                   | ES &                     | rest         | S           |                   |       |                            |                |       |                             |                   | STF         | RATA     |             | vajet jar |           |              | Sin C                   |
| Depth                                   | Type<br>No               | Test<br>Type | Tes<br>Resu | t<br>ilt          | Water | Reduced<br>Level           | Legend         | (Thi  | Depth<br>ick-               |                   |             | DE       | SCRIPTIO    | N         |           |              | Instrument/<br>Backfill |
| -1<br>-2<br>-5<br>-6                    |                          |              |             |                   |       | 107.46<br>101.76<br>101.36 |                | (5.   | 0.30<br>6.00<br>40)<br>6.40 | Lig<br>Me         | ht grey SII | LTSTONE, | with clay a |           |           |              |                         |
| Boring Pi                               |                          |              |             | servation         | 15    |                            | sing           | 4     | _                           |                   | Chiselling  |          | WHO WEEK    | Added     | G         | eneral Remar | ks                      |
| Date                                    | Time                     |              | pth         | Water<br>Dpt      |       | Depth                      | Dia. n         |       | Froi                        |                   | То          | Hours    | From        | То        |           |              |                         |
| 000000000000000000000000000000000000000 | ensions in<br>Scale 1:50 |              | s           | Contrac<br>Plant: | tor   | Site Inv<br>Service:       | estigatio<br>S | on    |                             | Meth              | hod:        |          |             |           | Logged By | y: Approve   | ed By:                  |

|                            | נ            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH119 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>107.76mATBM | Co-ordinates:<br>E 454,013 N 225,199 | SLR 🤌                |
| Project: Ardley Landfill S | Site Monitor | ing Borchole Installations   |                                      | Sheet:<br>2 of 3     |

|             |                      | •            |                | e Monit      | oring B               | Sorchole 1       | Instal                  |                        | ····         |               |           |               | 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|----------------------|--------------|----------------|--------------|-----------------------|------------------|-------------------------|------------------------|--------------|---------------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE      | S & 7                | <b>FEST</b>  | S              |              |                       | ,                |                         | ST                     | RATA         |               |           |               | emt/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth       | Type<br>No           | Test<br>Type | Test<br>Result | Water        | Reduced<br>Level      | Legend (Ti       | Depth<br>hick-<br>ss)   |                        | DE           | SCRIPTION     | 1         |               | Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9           |                      |              |                |              |                       | (3               | 3.90)                   | Medium grey            | , fresh LIM  | ESTONE. (c    | ontinued  | )             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10          |                      |              |                |              | 97.46                 | XXX              | 10.30<br>0.40)<br>10.70 | SILTSTONE Blocky groun |              | or fractured) | LIMEST    | ONE and clay  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11          |                      |              |                |              |                       |                  | 2.70                    | BIOCKY groun           | a (jointed o | n tractured)  | LINEST    | ONE and clay  | y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12          |                      |              |                |              |                       |                  | 2.30)                   |                        |              |               |           | •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13          |                      |              |                |              | 94.76                 | × × × [          | 13.00<br>0.80)<br>13.80 | Mainly SILT            |              |               |           |               | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14          |                      |              |                |              |                       |                  | 1.30)                   | Grey LIMES             | TONE.        |               |           |               | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |
| 15          |                      |              |                |              | 92.66                 | XXX              | 15.10<br>0.40)<br>15.50 | Light grey SI          |              |               |           |               | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                      |              |                |              |                       |                  |                         | Medium grey<br>shales. | Mg LIME:     | STONE, with   | h occcasi | onal bands of | silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Boring Prog | gress an             | d Wate       | er Obse        | rvations     | Cas                   | sing             |                         | Chiselling             |              | Water A       | Added     | Gene          | eral Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date        | Time                 | De           | pth            | Water<br>Dpt | Depth                 | Dia, mm          | Fro                     |                        | Hours        | From          | То        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |              |                |              | *0                    |                  |                         |                        |              |               |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All dimens  | sions in<br>ale 1:50 |              | 25.25          | Contractor   | : Site Inv<br>Service | restigation<br>s |                         | Method:                |              |               |           | Logged By:    | Approved B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                               |              | BOREHOLE No<br>BH119         |                                      |        |
|-------------------------------|--------------|------------------------------|--------------------------------------|--------|
| Client:<br>Viridor Waste Ma   | nagement     |                              |                                      |        |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>107.76mATBM | Co-ordinates:<br>E 454,013 N 225,199 | SLR 🗳  |
| Project: Ardley Landfill S    | Site Monitor | ing Borchole Installations   |                                      | Sheet: |

|             |            |              |                |                                                     |                  |         |                           |                               | 3 of 3            |            |             |               |              |            |  |  |
|-------------|------------|--------------|----------------|-----------------------------------------------------|------------------|---------|---------------------------|-------------------------------|-------------------|------------|-------------|---------------|--------------|------------|--|--|
| SAMPLI      | ES &       | TEST:        | S              | _ <u></u>                                           |                  |         |                           | ST                            | RATA              |            |             |               | -            | cmt/       |  |  |
| Depth       | Type<br>No | Test<br>Type | Test<br>Result | Water                                               | Reduced<br>Level | Legend  | Depth<br>(Thick-<br>ness) |                               | DI                | ESCRIPTIO  | NC          | 300           |              | Instrument |  |  |
| -17         |            |              |                |                                                     |                  |         | (3.50)                    | Medium grey<br>shales. (conti | Mg LIME<br>inued) | STONE, w   | ith occeas  | ional bands o | f silty      |            |  |  |
| -18         |            |              |                |                                                     |                  |         |                           |                               |                   |            |             |               |              |            |  |  |
| 19          |            |              |                |                                                     | 88.76            |         | 19.00                     | -                             |                   |            |             |               |              |            |  |  |
| -20         |            |              |                |                                                     |                  |         |                           |                               | Bor               | ehole comp | olete at 19 | .00m          |              |            |  |  |
| -21         |            |              |                |                                                     |                  |         |                           |                               |                   |            | ž.:         |               |              |            |  |  |
| 22          |            | 200          |                |                                                     |                  |         |                           |                               |                   |            |             |               |              |            |  |  |
| 23          |            |              |                |                                                     |                  |         |                           |                               |                   |            |             |               |              |            |  |  |
| Boring Prog | ress and   | Water        | Observatio     | ns l                                                | Casi             | ing     | $\frac{1}{1}$             | Chiselling                    |                   | Water      | Added       | Good          | eral Remarks | L          |  |  |
|             | Time       | Dept         |                |                                                     | Depth            | Dia, mn | n Fron                    |                               | Hours             | From       | To          | - Gene        | adi Kemark   |            |  |  |
|             |            |              | Dp             |                                                     |                  |         |                           |                               | 1043              | TOIL       | 10          |               | *            |            |  |  |
| All dimens  | sions in   | metres       | Contra-        | tractor: Site Investigation t: Services Method: Log |                  |         |                           |                               |                   |            |             | Logged By:    | Approved     | Ву:        |  |  |

|                             |              | BOREHOLE No<br>BH120         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|-----------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Client:<br>Viridor Waste Ma | nagement     |                              | TO CASE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART |        |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>107.09mATBM | Co-ordinates:<br>E 454,062 N 225,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLR >  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheet: |

| 106.74 V 3 0.35  Weathered, yellowish grey LIMESTONE.  1.55  Iron stained, yellowish (buff) grey LIMESTONE. Quite hard locally, though in places thin bands of highly weathered sandy silt occur.  -3  -4  -4  -5  -6  Interbedded weak siltstone and dark grey shale (CLAY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | uicy L     | - Indi       | III SI       | te Mon   |                 | - 0. 01101 |                |               | 1 of 1       |              |              |                 |             |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------------|--------------|----------|-----------------|------------|----------------|---------------|--------------|--------------|--------------|-----------------|-------------|------------|
| 106.74   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55 | SAMPL | ES &       | TEST         | `S           |          | L .             |            |                | ST            | RATA         |              |              |                 |             | sut/       |
| 106.74   1.00   Weathered, yellowish grey LIMESTONE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth | Type<br>No | Test<br>Type | Test<br>Resu | t<br>ilt | Reduce<br>Level | Legend     | (Thick-        |               | DI           | ESCRIPTIO    | ON           |                 |             | Instrument |
| Weathered, yellowish grey LIMESTONE.  105.54   1.55   Iron stained, yellowish (buff) grey LIMESTONE. Quite hard locally, though in places thin bands of highly weathered sandy silt occur.  7   100.59   6.50   Interbedded weak siltstone and dark grey shale (CLAY).  100.24   6.85   100.09   7.00   Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |              |              |          | 106.7           | 34 34      | 0.36           |               |              | 11 (100)     |              |                 |             |            |
| 105.54 1.55 Iron stained, yellowish (buff) grey LIMESTONE. Quite hard locally, though in places thin bands of highly weathered sandy silt occur.  -3 -4 -5 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |              |              |          | 100.7           | 7777       | 0.33           |               | ellowish gr  | ey LIMEST    | ONE.         |                 |             | 1          |
| 105.54 1.55 Iron stained, yellowish (buff) grey LIMESTONE. Quite hard locally, though in places thin bands of highly weathered sandy silt occur.  -3 -4 -5 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |              |              |          |                 |            | -              |               |              |              |              |                 |             | ı          |
| 100.59 100.59 100.09 1 700 1 Dark grey, fresh LIMESTONE, Quite hard locally, though in places thin bands of highly weathered sandy silt occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |            |              |              |          |                 | 出          | (1.20)         |               |              |              |              |                 |             |            |
| ron stained, yellowish (buff) grey LIMESTONE. Quite hard locally, though in places thin bands of highly weathered sandy silt occur.  (4.95)  (4.95)  (4.95)  (6.50)  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  6.85  100.09  7.00 Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 8          |              |              |          | 105 5           |            | £              |               |              |              |              |                 |             |            |
| -2 -3 -4 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |              |              |          | 103.3           |            | 1.53           | Iron stained, | yellowish (  | buff) grey I | IMESTO       | NE. Quite ha    | rd locally, | 1          |
| -4 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2     |            |              |              |          | *               |            | <u> </u>       | though in pla | ces thin bar | nds of high  | y weather    | ed sandy silt o | occur.      |            |
| -6  100.59 -6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |              |              |          |                 | 出          |                |               |              |              |              |                 |             |            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |              |              |          |                 | 井          | ţ              |               |              |              |              |                 |             | 2          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |              |              |          |                 |            | <u> </u>       |               |              |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  7  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3     |            | y y          |              |          |                 | 片          | ŧ              | R             |              |              |              |                 |             |            |
| 5  100.59 6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24 - 6.85  100.09 T 7.00 Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 | 井          | ŧ              | 6             |              |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  7  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |              |              |          |                 | 开          | ŧ              |               |              |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  7  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     |            |              |              |          |                 | 赶          | (4.95)         |               | 10           |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  6.85  100.09  7.00  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94    |            |              |              |          | 3               | 井          | £``            |               | *.5          |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  6.85  100.09  7.00  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 | 开          | -              |               |              |              |              |                 |             |            |
| 6  100.59  6.50  Interbedded weak siltstone and dark grey shale (CLAY).  100.24  6.85  100.09  7.00  Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _     | 30         |              |              |          |                 |            | <u> </u>       | i e           |              |              |              |                 |             |            |
| 100.59 6.50 Interbedded weak siltstone and dark grey shale (CLAY).  100.24 6.85 100.09 1 7.00 Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5     |            |              |              |          |                 | 廿          | Ē              |               |              |              |              |                 |             |            |
| 7 Interbedded weak siltstone and dark grey shale (CLAY).  100.24 — 6.85  100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 | H          | ŧ              |               |              |              |              |                 |             |            |
| 7 Interbedded weak siltstone and dark grey shale (CLAY).  100.24 — 6.85  100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 | 毌          | Ì              |               |              |              |              |                 |             |            |
| Interbedded weak siltstone and dark grey shale (CLAY).  100.24 — 6.85  100.09 I T 7.00 Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     |            |              |              |          | .00             | 井井         | ţ.             |               |              |              |              |                 |             |            |
| Interbedded weak siltstone and dark grey shale (CLAY).  100.24 — 6.85  100.09 I T 7.00 Dark grey, fresh LIMESTONE, shaly locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |              |              | ľ        | 100.5           |            | 6.50           |               |              |              |              |                 |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          | 8               |            | -              | Interbedded v | weak siltsto | ne and dark  | grey shal    | e (CLAY).       |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7     |            |              |              |          | 100.2           |            | - 6.85<br>7.00 | Dark grey, fr | esh LIMES    | TONE, sha    | ly locally.  |                 |             |            |
| Borehole complete at 7.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |              |              |          |                 |            |                |               |              |              |              |                 |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          | 3               |            |                |               | Box          | rehole comp  | olete at 7.0 | 00m             |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          | <u> </u>        |            |                |               |              |              |              | 352             |             |            |
| Boring Progress and Water Observations Casing Chiselling Water Added General Remarks  Date Time Depth Water Dpt Depth Dia. mm From To Hours From To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            | _            |              |          |                 |            | Fee            |               |              |              |              | Gene            | ral Remark  | s          |
| Date Time Depth Water Depth Dia. mm From To Hours From To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            | 1            | -            | Dpt      | Deput           | Dia. mi    | 110            | 10            | riours       | FIOII        | 10           | $\dashv$        |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 |            |                |               |              |              |              |                 |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |              |              |          |                 | 1          |                |               |              |              | )<br>()      |                 |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            | 1            |              |          |                 |            |                |               |              |              |              |                 |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0    |            |              |              |          |                 |            |                |               |              |              |              |                 |             |            |
| All dimensions in metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |              |              |          | r: Site Inv     | estigation |                | Method:       | L            |              |              | Logged By:      | Approved    | Ву         |

|                            | j            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH121 |
|----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma   | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174 | Date:        | Ground Level:<br>106.29mATBM | Co-ordinates:<br>E 454,112 N 225,181 | SLR >                |
| Project: Ardley Landfill S | Site Monitor | ing Borehole Installations   | 3                                    | Sheet:               |

| SAMPL       | FS & '    | TESTS  | 3 1            |       | I -              | 201     |                  | C'                                    | FD A T A                  |                         | -                        |                              | I of 1                 | TS          |
|-------------|-----------|--------|----------------|-------|------------------|---------|------------------|---------------------------------------|---------------------------|-------------------------|--------------------------|------------------------------|------------------------|-------------|
| Depth       | Type      | Test   | Test<br>Result | Water | Reduced<br>Level | Legend  | Depth<br>(Thick- |                                       | TRATA<br>D                | ESCRIPTI                | ON                       |                              |                        | Instrument/ |
|             | NO        | Туре   | Result         |       |                  | 31, 31, | ness)            | Medium bro                            |                           |                         |                          | f limestone.                 | TOPSOIL.               | Inet        |
| 1           |           |        | 19<br>1        |       | 105.89           |         | 0.40             | Iron stained<br>occasional b<br>base. | and weathe<br>ands highly | red, yellow<br>decompos | ish buff w<br>ed sandy s | hite LIMEST<br>ilt. Very har | ONE with d to drill at |             |
| 2           |           |        |                |       |                  |         | (3.40)           |                                       |                           |                         |                          |                              |                        |             |
| 4           |           |        | -              |       | 102.49<br>102.29 | X X X   | 3.80             |                                       |                           |                         |                          | MESTONE.                     | Very                   |             |
| 5           |           |        |                |       |                  |         | (3.00)           |                                       |                           |                         |                          |                              |                        |             |
| 7           |           |        |                |       | 99.29            |         | 7.00             |                                       |                           |                         |                          |                              | •                      |             |
| ě           |           |        |                |       |                  |         |                  |                                       | Bor                       | rehole comp             | olete at 7.0             | 00m                          |                        |             |
| Boring Prog | ress and  | Water  | Observations   | s     | Casi             | ng      | I                | Chiselling                            |                           | Water                   | Added                    | Gen                          | eral Remarks           | L<br>s      |
| Date        | Time      | Deptl  | h Water<br>Dpt |       | Depth            | Dia. mm | Froi             | n To                                  | Hours                     | From                    | То                       |                              |                        |             |
| All dimens  | ions in r | netres | Contract       | or:   | Site Inves       | igation |                  | Method:                               |                           |                         | · · · · ·                | Logged By:                   | Approved               | D           |

|                             |              | BOREHOLE No<br>BH122         |                                      |                  |
|-----------------------------|--------------|------------------------------|--------------------------------------|------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>105.75mATBM | Co-ordinates:<br>E 454,161 N 225,172 |                  |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   | 1                                    | Sheet:<br>1 of 2 |

|                                 |                |                      | <del></del>       |                         |                                              |                   |                           |               |                     | 1 of 2                |    |
|---------------------------------|----------------|----------------------|-------------------|-------------------------|----------------------------------------------|-------------------|---------------------------|---------------|---------------------|-----------------------|----|
| SAMPLES &                       |                |                      | <u> </u>          |                         | D                                            |                   | TRATA                     |               |                     |                       | I  |
| Depth Type<br>No                | Test<br>Type R | Fest<br>esult        | Reduced<br>Level  | Legend                  | Depti<br>(Thick-<br>ness)                    |                   | D                         | ESCRIPTI      | ON                  |                       |    |
|                                 |                |                      | 105.45            | 34 34                   | 0.3                                          | TOPSOIL,          | atharad val               | llowish And   | s                   | tained LIMESTONE.     |    |
| 1                               |                |                      |                   |                         | (2.10)                                       | Locally Mg        | rich.                     | ilowisip bul. | grey from su        | tained LIMESTONE.     |    |
| 2                               |                | 23                   | 103.35            | × ×                     | 2.40<br>2.50                                 | Highly decor      | mposed SA<br>nard, buff w | NDY SILT      | zone.<br>STONE plus | s trace haematite.    |    |
| 3                               |                |                      |                   |                         | (1.50)                                       |                   |                           |               |                     |                       |    |
| 4 .                             |                |                      | 101.75<br>-101.65 | XX                      | 4.00                                         | SANDY SIL         | T band.                   | -             |                     |                       |    |
| 5                               |                |                      |                   |                         | (2.40)                                       | Grey LIMES        | TONE,                     |               |                     |                       |    |
| 5                               |                |                      | 99.25             |                         | 6.50                                         |                   | 3                         |               |                     |                       |    |
|                                 |                | 200                  | 09.75             | × × × × × × × × × × × × | (0.50)                                       | Weak, brown damp. | ish grey SI               | LTSTONE       | with dark gr        | rey clay (shale) plus |    |
|                                 |                |                      | 97.75             |                         |                                              | Dark grey LI      | MESTONE                   | interbedde    | d with shale        | s and siltstones.     |    |
| Boring Progress and             | d Water Ol     |                      | Cas               | ing                     | 1                                            | Chiselling        |                           | Water         | Added               | General Remarks       | Ŀ  |
| Date Time                       | Depth          | Water<br>Dpt         | Depth             | Dia. mm                 | Fro                                          |                   | Hours                     | From          | То                  |                       | Į. |
|                                 |                |                      |                   |                         |                                              |                   |                           |               |                     |                       |    |
| All dimensions in<br>Scale 1:50 | metres         | Contractor<br>Plant: | : Site Inve       | sligation               | <u>"                                    </u> | Method:           |                           |               |                     | ogged By: Approved    | В  |

|                               |                       |           | BOREHOLE LOG                 |                                      | BOREHOLI<br>BH122 |          |
|-------------------------------|-----------------------|-----------|------------------------------|--------------------------------------|-------------------|----------|
| Client:<br>Viridor W          | aste Mar              | nagement  |                              |                                      |                   | <u> </u> |
| Project No:<br>403.0036.00174 |                       | Date:     | Ground Level:<br>105.75mATBM | Co-ordinates:<br>E 454,161 N 225,172 | SLR               | J        |
| Project: Ardley La            | andfill Si            | te Monito | oring Borehole Installation  | s                                    | Sheet:<br>2 of 2  |          |
| SAMPLES & T                   | ESTS                  |           |                              | STRATA                               |                   | nt/      |
| Depth Type                    | Test Tes<br>Type Resu | t ∧       | Reduced Legend (Thick-       | DESCRIPTION                          |                   | strument |

| SAMPL       |            |        | ill Site M       |         | T                  |           |                  |         | OTD + T + |             |             |            | 2 of 2       | <u> </u> |
|-------------|------------|--------|------------------|---------|--------------------|-----------|------------------|---------|-----------|-------------|-------------|------------|--------------|----------|
| 500000      |            | Test   | Test             | Water   | Paduand            | - 10 (i)  | Depth<br>(Thick- |         | STRATA    |             |             |            |              | 1        |
| Depth       | Type<br>No | Type   | Result           | }       | Reduced<br>Level   | Legend    | (Thick-<br>ness) |         |           | DESCRIPTION | ON          |            |              | ,        |
| 9           |            |        |                  |         | e e                |           |                  |         | В         | orehole com | plete at 8. | 00m        |              |          |
| 10          |            |        |                  |         |                    |           |                  | 22.     |           |             |             |            |              |          |
| 11          |            |        |                  |         |                    |           |                  |         |           |             |             |            |              |          |
| 12          |            |        |                  |         |                    |           |                  |         | *         |             |             |            |              |          |
| 13          |            |        |                  |         |                    |           |                  |         |           |             |             |            |              |          |
| 4           |            |        |                  |         |                    |           |                  |         |           |             |             | *          | 9            |          |
| 5           |            |        |                  |         |                    |           |                  |         |           |             |             |            |              | 200      |
| Boring Prog | gress and  | Water  | Observation      |         | Casi               | ng        | T                | Chisell | ing       | Water       | Added       | Gen        | eral Remarks | L        |
| Date        | Time       | Dep    | th War           | ter     | Depth              | Dia. mn   | From             |         | Hours     | From        | То          |            |              |          |
|             | 100        |        |                  |         |                    |           |                  |         |           | į           |             |            |              |          |
| All dimen   | sions in   | metres | Contra<br>Plant: | actor : | Site Investigation | stigation |                  | Method: |           | <u> </u>    |             | Logged By: | Approved     | P        |

|                             |              | BOREHOLE No<br>BH123         |                                      |                  |
|-----------------------------|--------------|------------------------------|--------------------------------------|------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                  |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>104.84mATBM | Co-ordinates:<br>E 454,209 N 225,163 | SLR              |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>1 of 2 |

|           |            |              |                |          |                  |                                  | 1 of 2                    |                                 |                            |                           |           |                              |            |             |
|-----------|------------|--------------|----------------|----------|------------------|----------------------------------|---------------------------|---------------------------------|----------------------------|---------------------------|-----------|------------------------------|------------|-------------|
| SAMPL     | ES &       | TESTS        | S              | <b>b</b> |                  |                                  |                           |                                 | ΓRATA                      |                           |           |                              | -          | /jut        |
| Depth     | Type<br>No | Test<br>Type | Test<br>Result | Water    | Reduced<br>Level |                                  | Depth<br>(Thick-<br>ness) |                                 |                            | ESCRIPTI                  |           | 200                          |            | Instrument/ |
|           |            |              |                |          | 104.54           | 11 11                            | 0.30                      | light brown                     | sandy TOPS                 | SOIL with                 | fragments | of limestone.                |            | É           |
| 1         |            |              |                |          |                  |                                  | (1.70)                    |                                 | ck- Weathe<br>lecomposed   | red LIMES<br>zones. Iro   | TONE wi   | th occasional<br>widespread. | bands of   |             |
| 2         | i          |              |                |          | 102.84           |                                  | 2.00                      | Moderately l                    | nard, yellow               | vish to buff              | white LIM | ESTONE.                      |            |             |
|           |            |              |                |          |                  |                                  | (1.20)                    |                                 | t. <b>4</b> . 8            |                           |           |                              |            |             |
| 3         |            |              |                |          | 101.64<br>101.54 | X X                              | 3.20                      | Decomposed                      | heavesiah (                | CANDY CI                  | 1.7       |                              |            |             |
|           | 100        |              |                |          | 301.5            |                                  | 3.50                      | Decomposed<br>Yellowish gr      | ey, massive                | LIMESTO                   | NE. occa  | sionally Mg r                | rich.      | 1           |
|           |            |              |                |          |                  |                                  |                           |                                 |                            |                           |           |                              |            |             |
| 4         |            |              |                |          |                  |                                  |                           |                                 |                            |                           |           |                              |            | ı           |
|           | E.         |              |                |          |                  |                                  | (2.50)                    |                                 |                            |                           |           |                              |            | ı           |
|           |            |              |                |          |                  | <del>       </del>               | (2.30)                    |                                 |                            |                           |           |                              |            |             |
| 5         |            | İ            |                |          |                  |                                  |                           |                                 |                            |                           |           |                              |            |             |
|           |            |              |                |          |                  | 工;;;;                            |                           |                                 |                            |                           |           |                              |            |             |
|           |            |              |                |          | 99.04            |                                  | 5.80                      |                                 |                            |                           | 2000      |                              |            | i           |
| 5         | k j        |              |                |          | 98.54            | × × ×<br>× × ×<br>× × ×<br>× × × | (0.50)<br>6.30            | Weak zone o                     | f decompos                 | sed SILTST                | ONE/ clay | y. Slightly da               | mp.        |             |
|           |            |              |                |          |                  |                                  | 0.5 0                     | Fresh looking<br>shale or silty | g, medium g<br>shale may b | grained dark<br>be common | k LIMEST  | ONE. Thin I                  | aminae of  |             |
| 7         |            |              |                | İ        | Ē                |                                  | -                         |                                 |                            |                           |           |                              |            |             |
|           |            | ı            |                |          | E                | 艼                                |                           |                                 |                            |                           |           |                              |            |             |
|           |            |              |                |          | Ė                | 坩                                |                           |                                 |                            |                           |           |                              |            |             |
|           |            |              | Observation    | 2000     | Casi             |                                  |                           | Chiselling                      |                            | Water                     | Added     | Gene                         | ral Remark |             |
| Date      | Time       | Dept         | h Water<br>Dpt | +        | Depth            | Dia. mm                          | Fron                      | n To                            | Hours                      | From                      | То        |                              |            |             |
|           |            |              |                |          | ĺ                |                                  |                           |                                 |                            |                           |           |                              |            |             |
|           |            |              |                |          |                  |                                  |                           |                                 |                            |                           |           |                              |            |             |
| All dimen |            | metres       | Contract       | tor :    | Site Inves       | nigation                         |                           | Method:                         |                            | <u></u>                   | <u> </u>  | Logged By:                   | Approved   | P           |
| Sca       | ale 1:50   |              | Plant:         | 5        | Services         | MARS 0000                        |                           |                                 |                            |                           |           | - 55-4 57.                   | pp.o.cu    | ٠           |

|                             | Viridor Waste Management  ect No: Date: Ground Level: Co-ordinates: |                              |                                      |                  |  |  |  |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------|------------------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|
| Client:<br>Viridor Waste Ma | nagement                                                            |                              |                                      |                  |  |  |  |  |  |  |  |
|                             | Date:                                                               | Ground Level:<br>104.84mATBM | Co-ordinates:<br>E 454,209 N 225,163 |                  |  |  |  |  |  |  |  |
| Project: Ardley Landfill S  | Site Monitor                                                        | ing Borehole Installations   |                                      | Sheet:<br>2 of 2 |  |  |  |  |  |  |  |

| Porting Progress and Water Observations  Casing  Chiselling  Water Added  General Remarks  Date Time Depth Water  Depth Dia nen  From To Hours From To  All dimensions in metres  Contractor: Site Investigation  Method:  In the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the |             |            |              | ill Site M         | onit         | oring E                 | soreno   | le Insta                  |                               |                           |                        |            |                 |        | 2 of 2      |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|--------------|--------------------|--------------|-------------------------|----------|---------------------------|-------------------------------|---------------------------|------------------------|------------|-----------------|--------|-------------|---------|
| 9 10 10 11 12 13 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPL       |            |              | S                  | <sub>5</sub> |                         |          |                           | S                             | TRATA                     |                        |            |                 |        |             | sut/    |
| 9 10 10 11 12 13 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth       | Type<br>No | Test<br>Type | Test<br>Result     | Wat          | Reduced<br>Level        | Legend   | Depth<br>(Thick-<br>ness) |                               |                           |                        |            |                 |        |             | nstrume |
| Borehole complete at 10.00m  Borehole complete at 10.00m  Boring Progress and Water Observations  Casing  Chiselling  Water Added  From To Hours From To  All dimensions in metres  Contractor: Site Investigation  Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9          |            |              |                    |              |                         |          | (3.70)                    | Fresh lookii<br>shale or silt | ng, medium<br>y shale may | grained da<br>be commo | ark LIMES  | STONE.<br>nued) | Thin ! | aminae of   |         |
| 112    Doring Progress and Water Observations   Casing   Chiselling   Water Added   General Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |            |              | £                  |              | 94.84                   |          | 10.00                     |                               |                           |                        |            |                 |        |             |         |
| All dimensions in metres  Contractor: Site Investigation  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method:  Method: | 11          |            |              |                    |              |                         |          |                           |                               | Во                        | rehole com             | plete at 1 | 0.00m           |        |             |         |
| Soring Progress and Water Observations  Casing  Chiselling  Water Added  General Remarks  Date Time Depth Depth Dia.mm  From To Hours From To  All dimensions in metres  Contractor: Site Investigation  Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12          |            |              |                    |              |                         |          |                           |                               |                           |                        |            |                 |        |             |         |
| Soring Progress and Water Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13          |            |              |                    |              |                         |          |                           |                               |                           |                        |            |                 |        |             |         |
| Boring Progress and Water Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14          |            |              |                    |              |                         |          |                           | ,                             | K                         |                        |            |                 |        |             |         |
| Date Time Depth Water Depth Dia.mm From To Hours From To  All dimensions in metres Contractor: Site Investigation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15          |            |              |                    |              |                         |          |                           |                               |                           |                        |            |                 |        |             |         |
| Date Time Depth Water Depth Dia.mm From To Hours From To  All dimensions in metres Contractor: Site Investigation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boring Prog | ress and   | Water        |                    |              | Casir                   | ng F     |                           | Chiselling                    |                           | Water                  | Added      | 1               | Gener  | ral Remarks |         |
| All dimensions in metres   Contractor : Site Investigation   Method:   I   I   I   I   I   I   I   I   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date        | Time       | Dept         | h Water<br>Dpt     | I            | Depth                   | Dia. mm  | From                      |                               |                           |                        |            | 1               |        |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |              |                    |              |                         |          |                           |                               | æ j                       |                        |            |                 |        | B           |         |
| Scale 1:50 Plant: Services Logged By: Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            | netres       | Contract<br>Plant: | or: S        | Site Invest<br>Services | tigation | N                         | fethod:                       |                           |                        |            | Logged          | Ву:    | Approved    | By:     |

|                               | .1           | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH124 |
|-------------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client: Viridor Waste Ma      | nagement     |                              |                                      |                      |
| Project No:<br>403.0036.00174 | Date:        | Ground Level:<br>103.84mATBM | Co-ordinates:<br>E 454,256 N 225,146 | SLR                  |
| Project: Ardley Landfill S    | Site Monitor | ing Borehole Installations   | 3                                    | Sheet:               |

| SAMPL                 |            |         | i Site Mo    |               |              |                                                              |              | 77D 1 77 1  | <del></del> |                         |                               | 1 of 2           | 9]]         |
|-----------------------|------------|---------|--------------|---------------|--------------|--------------------------------------------------------------|--------------|-------------|-------------|-------------------------|-------------------------------|------------------|-------------|
|                       | Т —        | Test    | Test         | at Redu       | and          | Dept                                                         |              | TRATA       |             |                         |                               | -0.5%) 57%       | Instrument/ |
| Depth                 | Type<br>No | Туре    | Result       | ≥ Keut<br>Lev | ced Legend   | (Thick-<br>ness)                                             |              | D           | ESCRIPTI    | ON                      |                               |                  | 1           |
| 1                     |            |         |              | 103           | 3.54         | 0.3                                                          | Iron stained | with highly | / decompos  | y, medium<br>ed zones u | grained LIM<br>usually 0.2m t | ESTONE.<br>hick. |             |
| 2                     |            |         |              |               |              | (4.50)                                                       |              |             |             |                         |                               |                  |             |
| 3                     |            |         | ,            |               |              | - (+.30)<br><br><br><br><br><br><br><br><br><br><br><br><br> |              |             |             |                         |                               |                  |             |
| 4                     |            |         |              | 9 80<br>8     |              |                                                              |              |             |             |                         |                               |                  |             |
| 5                     |            |         |              | 99            | .74 * * * *  | 4.80                                                         | Decompose    |             |             | aminae.                 |                               |                  | 1           |
| 5                     |            |         |              | 98            | .04          | 5.80<br>- 6.10                                               | Brownish gr  | 7           |             | oedded wit              | th dark grey o                | lay (shale).     |             |
|                       |            |         |              | 06            |              | (1.30)                                                       |              |             |             | ē                       |                               |                  |             |
| 96.44 7.40    X X X X |            |         |              |               |              |                                                              |              |             |             |                         |                               |                  |             |
| Boring Prog           | gress and  | Water ( | Observations |               | Casing       |                                                              | Chiselling   | 3           | Water       | Added                   | Gen                           | eral Remark      | s           |
| Date                  | Time       | Depth   | Water<br>Dpt | Depti         | n Dia. mr    | n Fro                                                        | m To         | Hours       | From        | То                      |                               |                  |             |
| All dimens            | sions in r | netres  | Contracto    | r : Site L    | nvestigation | 1                                                            | Method:      |             |             |                         | Logged By:                    | Approved         | В           |

|                             | ]            | BOREHOLE LOG                 |                                      | BOREHOLE No<br>BH124 |
|-----------------------------|--------------|------------------------------|--------------------------------------|----------------------|
| Client:<br>Viridor Waste Ma | nagement     |                              |                                      |                      |
| Project No: 403.0036.00174  | Date:        | Ground Level:<br>103.84mATBM | Co-ordinates:<br>E 454,256 N 225,146 | SLR )                |
| Project: Ardley Landfill S  | Site Monitor | ing Borehole Installations   |                                      | Sheet:<br>2 of 2     |
| SAMPLES & TESTS             |              |                              | comp Lond                            |                      |

| SAMPLI        | ES &       | TESTS        | 3              | h               |         |                           | S          | TRATA |             |             | ' '   |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|------------|--------------|----------------|-----------------|---------|---------------------------|------------|-------|-------------|-------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth         | Type<br>No | Test<br>Type | Test<br>Result | Reduce<br>Level | Legend  | Deptl<br>(Thick-<br>ness) | 1          | 1     | DESCRIPT    | ION         |       |              | Tuesday.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9             |            |              |                |                 |         |                           |            | В     | orehole con | nplete at 8 | 5.00m |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10            |            |              |                |                 |         |                           |            |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11            |            |              |                |                 |         |                           |            |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12            |            |              |                |                 |         |                           |            |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13            |            |              |                |                 |         | _                         |            |       |             |             |       | w<br>ee      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14            |            |              |                |                 |         |                           |            |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15            |            |              |                |                 |         |                           |            |       |             |             | •     |              | 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 100 DE 10 |
| Boring Progra | ess and    | Water (      | Observations   | Cas             | ing     | <del></del>               | Chiselling |       |             |             | T- == |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | ime        | Depth        |                | Depth           | Dia. mm | Fron                      |            | Hours | From        | Added       | Gene  | eral Remarks | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |            |              |                |                 |         |                           |            |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All dimension | ons in m   | netres       | Contracto      | r : Site Inve   |         | <u> </u>                  | Method:    |       |             |             |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| DND IECUIUS (ZUIS) | BRD | records | (2015) |
|--------------------|-----|---------|--------|
|--------------------|-----|---------|--------|

Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

Method Used: 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

Sheet 1 of 1

| Sa           | amples & T | ests    | Description of Strata                                                                                                                  | Depth      | / Geology                 | Legend |
|--------------|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|--------|
| Depth        | Type & No  | Value   | ·                                                                                                                                      | (Level     | )   550,099               | Logona |
| 0.10         | PID<br>J1  | 0.0 ppm | MADE GROUND: Dark brown/black, sandy, gravelly clay. Gravel of fine to coarse, angular to rounded flint, brick and concrete.           | 0.20       | MG                        |        |
| 0.40         | PID<br>D1  | 0.0 ppm | Orange brown, sandy, gravelly CLAY. Gravel of fine to coarse, angular to subangular limestone with tabular limestone cobbles.          | ()<br>0.50 | NOITY                     |        |
| 0.60<br>1.20 | J2<br>B1   | 0.0 ppm | Light grey and cream brown, sandy, clayey GRAVEL of fine to coarse angular to subangular, limestone with cobbles of tabular limestone. | 1          | WHITE LIMESTONE FORMATION |        |
|              |            |         |                                                                                                                                        | 1.60 ()    |                           |        |
|              |            |         |                                                                                                                                        |            |                           |        |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

## - 1.3 — D

#### **General Remarks:**

Trial pit terminated at 1.60m bgl on suspected Limestone rock.

Log Scale 1:25



All dimensions in metres

Email: info@brduk.com

Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

Method Used: 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

**TP02** 

Sheet 1 of 1

| Samples & Tests  Pepth Type & No Value |           | ests    | Description of Strata                                                                                                                                      | Dep      | oth /           | Geology | Legend   |
|----------------------------------------|-----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------|----------|
| epth                                   | Type & No | Value   | Description of Strata                                                                                                                                      | (Le      | vel)            | Ceology | Legena   |
|                                        |           |         | MADE GROUND: Scrub over: Dark brown, sandy, gravelly clay. Gravel of \fine to coarse, angular to rounded flint, limestone, brick and concrete.             | _ ()     | .10             | Σ       |          |
| 0.30                                   | PID<br>J1 | 0.0 ppm | Orange brown and yellow brown, very sandy, very gravelly CLAY. Gravel of fine to coarse, angular to subangular, limestone, with tabular limestone cobbles. | _        |                 | ш       |          |
| ).50<br>).60                           | D1<br>PID | 0.0 ppm |                                                                                                                                                            |          |                 | WLF     |          |
| 0.80                                   | J2<br>B1  |         | Orange brown and cream brown, sandy, clayey GRAVEL of fine to coarse, angular to subangular limestone with tabular limestone cobbles.                      | ()       | .70<br>)<br>.85 |         |          |
|                                        |           |         | coarse, angular to subangular limestone with tabular limestone cobbles.                                                                                    | ()       |                 |         | <u> </u> |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _<br>_   |                 |         |          |
|                                        |           |         |                                                                                                                                                            |          |                 |         |          |
|                                        |           |         |                                                                                                                                                            | 2        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            |          |                 |         |          |
|                                        |           |         |                                                                                                                                                            |          |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | 3        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            |          |                 |         |          |
|                                        |           |         |                                                                                                                                                            | <u> </u> |                 |         |          |
|                                        |           |         |                                                                                                                                                            | _        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | =        |                 |         |          |
|                                        |           |         |                                                                                                                                                            | 4        |                 |         |          |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

# - 1.2 — D

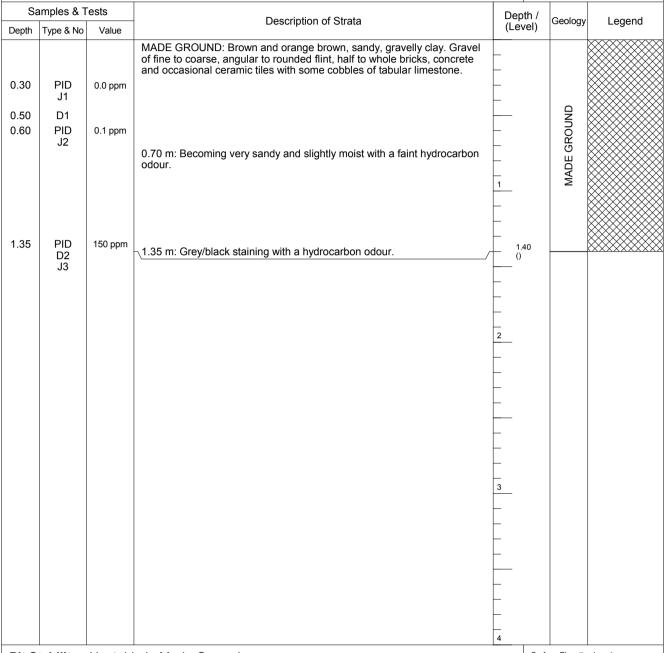
#### **General Remarks:**

Trial pit terminated at 0.85m bgl on suspected Limestone rock.

Log Scale 1:25



All dimensions in metres


Mr J and Mrs R Pickford Client: **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

**Method Used:** 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

**TP03** 

Sheet 1 of 1



Pit Stability: Unstable in Made Ground Groundwater: Not encountered

Surface Elevation Level:

# 1.3 -D

**Plan of Trial Pit:** 

#### **General Remarks:**

Trial pit terminated at 1.40m bgl on suspected Limestone rock.

All dimensions in metres Log Scale 1:25

Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

Method Used: 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

**TP04** 

Sheet 1 of 1

| Sa                   | Samples & Tests  ppth Type & No Value |         | Description of Strata                                                                                                                                                                                                      | Dep      | oth /           | Geology | Legend |
|----------------------|---------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------|--------|
| Depth                | Type & No                             | Value   | Description of Guata                                                                                                                                                                                                       | (Le      | vel)            | Coology | Logona |
| 0.25<br>0.40         | PID<br>J1<br>D1                       | 0.1 ppm | MADE GROUND: Tarmac/Roadstone.  Medium dense to dense, grey brown/yellow brown, sandy, clayey GRAVEL of fine to coarse, angular to subangular limestone with cobbles of limestone.                                         | _ ()<br> |                 | F M     |        |
| 0.60<br>0.70<br>0.80 | D2<br>PID<br>J2<br>B1                 | 0.0 ppm | Yellow brown, sandy, gravelly CLAY. Gravel of fine to coarse, angular to tabular limestone  Yellow brown, weak LIMESTONE, recovered as sandy gravel of fine to coarse, angular limestone and tabular cobbles of limestone. | ()       | .75<br>)<br>.82 | MLF     |        |
|                      |                                       |         |                                                                                                                                                                                                                            |          |                 |         |        |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

# - 1.3 <del>-</del> D

#### **General Remarks:**

Trial pit terminated at 0.82m bgl on suspected Limestone rock.

Log Scale 1:25



All dimensions in metres

Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

Method Used: 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

**TP05** 

Sheet 1 of 1

| Sa           | amples & T      | ests    | Description of Strata                                                                                                                                                             | Dep      | oth / | Geology      | Legend |
|--------------|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------|--------|
| Depth        | Type & No       | Value   |                                                                                                                                                                                   | (Le      | vel)  | Joology      |        |
| 0.20<br>0.40 | PID<br>J1<br>D1 | 0.0 ppm | MADE GROUND: Concrete  Medium dense to dense, grey brown/yellow brown, sandy, clayey GRAVEL of fine to coarse, angular to subangular limestone with cobbles of tabular limestone. | 0.<br>() | .10   | WLF          |        |
|              |                 |         | 0.50 m: 30mm diameter iron pipe crossing centre of pit FACE A - C                                                                                                                 | 0.       | .55   |              | 00000  |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | 1        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | 2        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | 3        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | _        |       |              |        |
|              |                 |         |                                                                                                                                                                                   |          |       |              |        |
|              |                 |         |                                                                                                                                                                                   | <u> </u> |       |              |        |
|              |                 |         | Illy stable throughout                                                                                                                                                            | 4        | _     | ace Flevatio |        |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

# - 1.3 — D

#### **General Remarks:**

Trial pit terminated at 0.55m bgl due to service pipe encountered.

All dimensions in metres Log Scale 1:25



Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015 Method Used:

180° Backhoe excavator (JCB 3CX type)

Trial Pit No.

**TP06** 

Sheet 1 of 1

|      | imples & To |       | Description of Strata                                                                                                                        | Dep<br>(Lev | th / | Geology | Legend |
|------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|---------|--------|
| epth | Type & No   | Value |                                                                                                                                              | (Le         | vel) |         |        |
| 0.10 | B1          |       | MADE GROUND: Dense, cream brown, sandy, clayey gravel of fine to medium, angular to rounded limestone Possible historic concrete/cement mix. | 0.          | 10   | Σ       |        |
|      |             |       | m: Unable to excavate further.                                                                                                               |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | -           |      |         |        |
|      |             |       |                                                                                                                                              | -           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | 1           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              | 2           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              | -           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | _           |      |         |        |
|      |             |       |                                                                                                                                              | 3           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | L           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | -           |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              |             |      |         |        |
|      |             |       |                                                                                                                                              | 4           |      |         |        |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

## - 1.3 <del>-</del> D

#### **General Remarks:**

Trial pit abandoned at 0.1m bgl as unable to excavate further.

All dimensions in metres Log Scale 1:25



Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** Logged By: J McDermott Date Completed: 15/06/2015

Method Used: 180° Backhoe excavator (JCB 3CX type) Trial Pit No.

**TP07** 

Sheet 1 of 1

| Sa                   | amples & T      | ests    | Description of Strata                                                                                                                                                                                                                  | Dep           | oth / | Geology     | Legend                                 |
|----------------------|-----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------------|----------------------------------------|
| Depth                | Type & No       | Value   | ·                                                                                                                                                                                                                                      | (Le           | vel)  | Jeology     | Legend                                 |
| 0.30<br>0.50         | PID<br>J1<br>D1 | 0.0 ppm | MADE GROUND: Medium dense to dense, cream brown, sandy, slightly clayey gravel of fine to coarse angular to rounded limestone with cobbles of tabular limestone.  0.60 m: Face B - D: 50mm diameter cast iron pipe - expected to be an | <br><br><br>  |       | MADE GROUND |                                        |
|                      |                 |         | ∖old drainage pipe.                                                                                                                                                                                                                    | _ ()          | .70   |             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 0.80<br>0.90<br>0.95 | D2<br>PID<br>J2 | 0.0 ppm | Orange to yellow, sandy, slightly clayey GRAVEL of fine to coarse angular to subangular limestone with cobbles of tabular limestone.                                                                                                   | _<br>_<br>1 1 | .00   | WLF         | 0-0-0-0                                |
|                      | B1              |         |                                                                                                                                                                                                                                        | _ ()<br>_     | ,     |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        |               |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | <del>-</del>  |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | 2             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        |               |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | 3             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | _             |       |             |                                        |
|                      |                 |         |                                                                                                                                                                                                                                        | 4             |       |             |                                        |

**Pit Stability:** Generally stable throughout **Groundwater:** Not encountered

Plan of Trial Pit:

Surface Elevation Level:

# - 1.2 — D

#### **General Remarks:**

Trial pit terminated at 1.0m bgl on suspected Limestone rock.

All dimensions in metres Log Scale 1:25



TP01





Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP02





Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP03





Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP04





Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP05



Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP06





Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



TP07

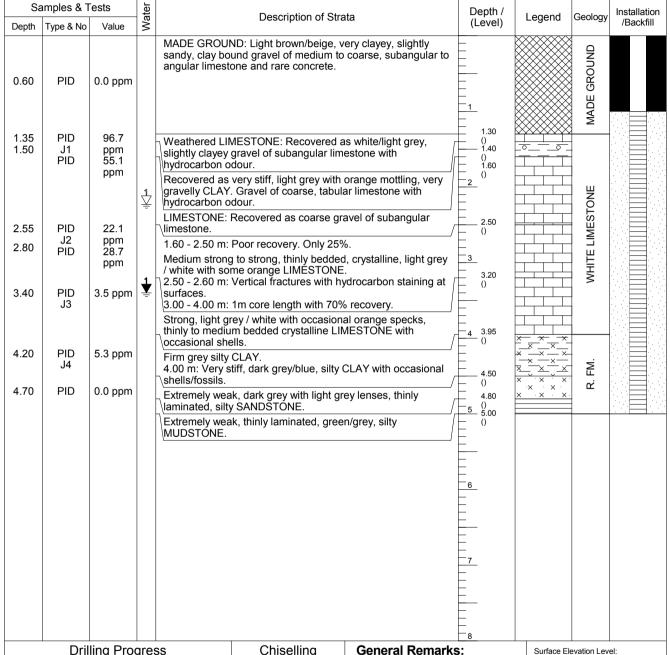




Project Title: Ashgrove Farm, Ardley Client: Mr J and Mrs R Pickford



### **BOREHOLE RECORD**


Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

BRD2409 **Project No:** I Hibberd Logged By: **Date Commenced:** 11/09/2015 Date Completed: 11/09/2015

**Method Used:** Dynamic Sampling with follow on Rotary Coring (Water Flush) Borehole No.

**BH01** 

Sheet 1 of 1



|                                              | D                                    | rilling F                         | Progres                              | SS             |                             | С | hisellir | ıg    |  |
|----------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------|-----------------------------|---|----------|-------|--|
| Date                                         | Hole<br>Depth                        | Casing<br>Depth                   | Casing<br>Dia (mm)                   | Water<br>Depth | Water depth<br>after 20mins |   | То       | Hours |  |
| 11-09-15<br>11-09-15<br>11-09-15<br>11-09-15 | 1.60<br>3.00<br>3.40<br>4.00<br>5.00 | -<br>1.60<br>1.60<br>1.60<br>3.00 | 92.5<br>92.5<br>92.5<br>92.5<br>92.5 | 3.40<br>-<br>- | 2.23                        |   |          |       |  |
|                                              |                                      |                                   |                                      |                |                             |   |          |       |  |

**General Remarks:** 

Borehole terminated at 5.00m bgl. Borehole fitted with gas and groundwater monitoring installation and flush metal cover.

Dynamic sample to 1.60m and then coring to base.

All dimensions in metres Log Scale 1:50



## **BOREHOLE RECORD**

Client: Mr J and Mrs R Pickford **Project Title:** Ashgrove Farm, Ardley

Project No: BRD2409 Logged By: I Hibberd **Date Commenced:** 11/09/2015 Date Completed: 11/09/2015

Method Used: Dynamic Sampling with follow on Rotary Coring (Water Flush) Borehole No.

**BH02** 

Sheet 1 of 1

|                   |            |                    | -                     |                                                   | •                                                                   |                                            |             | ,      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|-------------------|------------|--------------------|-----------------------|---------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------|--------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Samples & Tests   |            | Water              | Description of Strata |                                                   |                                                                     | Depth /                                    |             | Legend | Geology                               | Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Depth             | Type & No  | Value              | Wa                    | ·                                                 |                                                                     |                                            |             | vel)   | Legena                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /Backfill |
| 0.30<br>0.50      | PID<br>PID | 0.0 ppm<br>0.0 ppm |                       | MADE GROUN<br>of fine to coars<br>cobbles of lime | ND: Loose, brown and wee, subangular to tabular estone.             | hite, silty, sandy gravel r limestone with | _ O         | ).20   |                                       | MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 0.80              | PID        | 0.0 ppm            |                       |                                                   | e, yellow brown with som<br>L of subangular limesto                 |                                            | E 0         | i.70 - |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   | yellow, slightly clayey Sa<br>hydrocarbon odour or s<br>Il casing). |                                            |             | .30    | ÷                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   | Recovered as medium s<br>ayey, coarse, subangula                    |                                            |             | )      |                                       | TONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 2.00              | PID        | 0.0 ppm            |                       |                                                   |                                                                     |                                            |             | 2.20   |                                       | WHITE LIMESTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    | <u></u>               | _lenses LIMES                                     | k, thickly laminated, ligh<br>ΓΟΝΕ with clayey infill.              | /                                          |             | .50    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 2.70              | PID<br>J1  | 0.0 ppm            | =                     | Very stiff, light<br>limestone grav               | grey with orange CLAY<br>el.                                        | with some tabular                          | 3 3         | -      |                                       | <b>\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\over</b> |           |
|                   |            |                    |                       |                                                   | Recovered as medium s<br>ayey, coarse, subangula                    |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 3.50              | PID        | 0.0 ppm            | <b>1</b>              |                                                   |                                                                     |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 4.20              | PID        | 0.0 ppm            |                       | Very stiff, sligh                                 | tly fissured, dark grey, s                                          | ilty CLAY.                                 | <u>-4</u> 4 | .00 ×  | X X X X X X X X X X X X X X X X X X X | RF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            |             | ×.80   | × × × × × × × × × × × × × × × × × × × | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            | <u>_5</u>   | )      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            | 6_          |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            | 7           |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            |             |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                   |            |                    |                       |                                                   |                                                                     |                                            | 8           |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Drilling Progress |            |                    | gres                  | ss                                                | Chiselling                                                          | General Remarks                            | s:          |        | Surface El                            | evation Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el:       |

| Drilling Progress |                                                          |                                      |                              |                                      |                |                             | С | hisellir | ng    | General Remarks:                                                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------------|-----------------------------|---|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Date                                                     | Hole<br>Depth                        | Casing<br>Depth              | Casing<br>Dia (mm)                   | Water<br>Depth | Water depth<br>after 20mins |   | То       | Hours |                                                                                                                                                                                                                                              |
|                   | 11-09-15<br>11-09-15<br>11-09-15<br>11-09-15<br>11-09-15 | 0.60<br>2.80<br>3.70<br>4.30<br>4.80 | 1.30<br>1.30<br>1.30<br>1.30 | 92.5<br>92.5<br>92.5<br>92.5<br>92.5 | 3.70           | -<br>2.60<br>-<br>-         |   |          |       | Borehole terminated at 4.80m bgl. Borehole fitted with gas and groundwater monitoring installation and flush metal cover Hand dug pit to 0.60m, open how 1.30m to allow casing to be installed, coring to 4.30m and dynamic sample to 4.80m. |

chole fitted with gas and indwater monitoring allation and flush metal cover. In dug pit to 0.60m, open hole in to allow casing to be alled, coring to 4.30m and amic sample to 4.80m.

All dimensions in metres Log Scale 1:50





## Specialist UXO Desk Top Study



# International Unexploded Ordnance Risk Mitigation

# Many People...

EXPLOSIVE ORDNANCE DESKTOP STUDY FOR:

**PROJECT 21056** 

(LAND TO THE NE, E, SE OF)
RAF HEYFORD
OXFORDSHIRE

Hydrock **I** 









#### **EXPLOSIVE ORDNANCE DESKTOP STUDY**

Of

# LAND TO THE NE, E, SE OF – RAF HEYFORD OXFORDSHIRE

Conducted by EOD Contracts Limited

On behalf of



#### **Conditions of Release**

This document was produced in the United Kingdom of Great Britain & Northern Ireland and is copyright © EOD Contracts Ltd. It has been prepared for the titled project, or named part thereof, and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of EOD Contracts Ltd being obtained. EOD Contracts Ltd accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned. To the extent that this report is based on information supplied by other parties; EOD Contracts accepts no liability for any loss or damage suffered by the client, whether contractual or otherwise, stemming from any conclusions based on data supplied by parties other than EOD contracts Ltd and used by EOD contracts Ltd in preparing this report. This document has been produced for the purpose of assessment and evaluation only. The contents of this document shall not in whole or in part: 1. Be used for any purpose other than that for which it was intended, 2. Be disclosed to any individual not having a need to know such information nor to any third party individual, organisation or government, 3. Be stored in any retrieval system nor be reproduced or transmitted in any form by any optical, electronic, mechanical or other means including photocopying, without the prior written permission of EOD Contracts Ltd, Unit G1, Holly Farm Business Park, Honiley, Kenilworth CV81NP United Kingdom.

#### **Document Control & Enquiries**

| Document Reference: EOD/21/21056/DTS/HYDROCK/(Land to the NE, E, SE of) RAF Heyford, Oxfordshire  Distribution Copy 1 (Electronic)  Distribution Copy 2 (Electronic)                                                                                            |             |                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|--|--|--|--|
| Archived                                                                                                                                                                                                                                                        | ctronic)    | Distribution Copy 2 (Electronic) Uncontrolled |  |  |  |  |
| EOD Contracts Limited.<br>26-28 Kempton Road<br>Keytec 7 Business Park<br>Pershore<br>WR10 2TA                                                                                                                                                                  |             | Hydrock                                       |  |  |  |  |
| Document Originator                                                                                                                                                                                                                                             | Alan Hall   | 12/02/2021                                    |  |  |  |  |
| Authorised Release                                                                                                                                                                                                                                              | Shane Meake | er 15/02/2021                                 |  |  |  |  |
| All enquiries regarding this document should be directed to: Email: <a href="mailto:shane.meaker@eodcontractsltd.com">shane.meaker@eodcontractsltd.com</a> Telephone: 01386 578405. Alternatively, the persons named above can be reached at the above address. |             |                                               |  |  |  |  |

#### **CONTENTS**

| Title                                     | Pages   |
|-------------------------------------------|---------|
| Front Cover                               | i       |
| Document Control & Enquiries              | i       |
| Contents Page                             | iii-iv  |
| Terms and Definitions                     | v-vi    |
| Executive Summary                         | Vii     |
| Scope of works                            | Viii    |
| Sources of UXO Contamination              | ix      |
| Key Findings                              | X       |
| Recommendations                           | xi-xiii |
| Trecommendations                          | AI-AIII |
| INTRODUCTION                              | 1       |
| Instruction                               | 1       |
| Scope of Work                             | 1       |
| Restrictions                              | 2       |
| Sensitive Documentation                   | 2       |
| Objective                                 | 2       |
| CSJOCATO                                  |         |
| SOURCES OF INFORMATION                    | 3       |
| Ministry of Defence Records               | 3       |
| Attack Record Keeping                     | 3       |
| Attack Record Accuracy                    | 3-4     |
| Errors and Omissions                      | 4       |
| Bibliography                              | 4       |
|                                           |         |
| SITE DESCRIPTION AND DETAILS              | 5       |
| Site Description & Location               | 5-6     |
| Geology                                   | 7       |
| Current Site Use                          | 7       |
| Future Works                              | 7       |
|                                           |         |
| HISTORICAL REVIEW                         | 8       |
| Historical Mapping and Aerial Photography | 8       |
| WWI                                       | 8       |
| WWII                                      | 9-11    |
| Abandoned Bombs/UXO                       | 11      |
| Anti-Aircraft Artillery                   | 12      |
| Prior Clearance Operations                | 12      |
| V1 & V2 Bomb Strikes                      | 12      |
|                                           |         |
| SOURCES OF UXO CONTAMINATION              | 13      |
| General                                   | 13-15   |
| Recent UXO finds within the UK            | 16      |
| RISK ASSESSMENT                           | 17      |
| Risk Assessment                           | 17-19   |
| וופת שפפסווופוונ                          | 17-19   |
| CONCLUSIONS                               | 20 -22  |
|                                           |         |

#### Project 21056 – (Land to the NE, E, SE of) RAF Heyford, Oxfordshire,

| Title           | Pages |
|-----------------|-------|
| RECOMMENDATIONS | 14    |

| Annexes |                                           |             |  |  |
|---------|-------------------------------------------|-------------|--|--|
| Annex A | Location Map A-1                          |             |  |  |
| Annex B | Historic Maps B-1 to B-3                  |             |  |  |
| Annex C | WW1 Bomb Map C-1                          |             |  |  |
| Annex D | Explosive Ordnance Information and Safety | D-1 to D-10 |  |  |
| Annex E | Recent UXO Finds (UK)                     | E-1 to E-5  |  |  |
| Annex F | Tables                                    | F-1 to F-4  |  |  |

#### **TERMS AND DEFINITIONS**

#### **Anti-Aircraft Shells (AA)**

Small High Explosive Shells (HE) shells ranging up to 100mm in diameter.

#### **Battlefield Area Clearance (BAC)**

The systematic clearance of munitions from military property or old battle sites e.g., ranges, airfields etc.

#### **Borehole Search**

The placing of boreholes in a set pattern, then using a magnetometer to take readings at specific depths along each borehole. When used with a geophysical survey system this will give a magnetic signature of the area. The depth of the borehole and the pattern will depend upon the type of Unexploded Bombs (UXB) and the geology of the ground.

#### **Doodle Bug (See Pilotless Aircraft)**

#### **Explosive Ordnance (EO)**

All munitions containing explosives, nuclear fission/fusion materials and or biological and chemical agents. This includes bombs and warheads; guided and ballistic missiles; artillery, mortar, rocket and Small Arms Ammunition (SAA); all mines, torpedoes and depth charges; pyrotechnics; clusters and dispensers; cartridge and propellant actuated devices; electro-explosive devices; clandestine and improvised explosive devices (IED); and all similar or related items or components explosive in nature.

#### **Explosive Ordnance Clearance (EOC)**

See BAC.

#### **Explosive Ordnance Disposal (EOD)**

The detection, identification, field evaluation, render safe, recovery and disposal of **UXO**.

#### **Geophysical Survey**

The survey of an area using a Magnetometer and geophysical gathering device, after interpretation, this will produce a geophysical map and an object list for any metallic anomalies.

#### **High Explosive (HE)**

High explosives burn/detonate at rates of up to 9,000 m/per second.

#### **Incendiary Bomb (IB)**

Incendiary bombs ranged from 1kg in size to 500kg the larger sizes were sometimes called Oil Bombs. Fills range from thermite mixtures, phosphorus to kerosene.

#### **Intrusive Survey**

The use of a cone penetrometer (MagCone) or drilled boreholes (MagDrill) to take magnetometer test in a set pattern (see borehole search), or to prove pile positions.

#### Land Service Ammunition (LSA)

LSA is defined as "All items containing explosives or pyrotechnic compounds which are placed, thrown or projected so as to cause damage to men and equipment during land warfare.

#### Long Range Rocket (LRR)

The long-range rocket sometimes codenamed Big Ben is the V2 rocket designed to deliver an approximate payload of 1000 kg.

#### Oil Bomb (OB)

A bomb containing a flammable liquid, normally the KC 250 Flam or the C 500 flam.

#### **Pilotless Aircraft (PAC)**

A flying bomb (Fly) or doodlebug is the V1 rocket or predecessors designed to deliver an explosive payload of approximately 500kg - 800kg.

#### **Parachute Mine (PM)**

Air dropped mine may have been used as a blast effect bomb maximum explosive content 1600lb always fitted with anti-handling and anti-stripping equipment.

#### **Unexploded Bomb (UXB)**

Any air dropped bomb that has failed to operate.

#### **Unexploded Ordnance (UXO)**

Explosive ordnance that has been primed, fused, armed or otherwise prepared for use or used. It may have been fired, dropped, launched or projected yet remains unexploded either through malfunction or design or for any other cause.

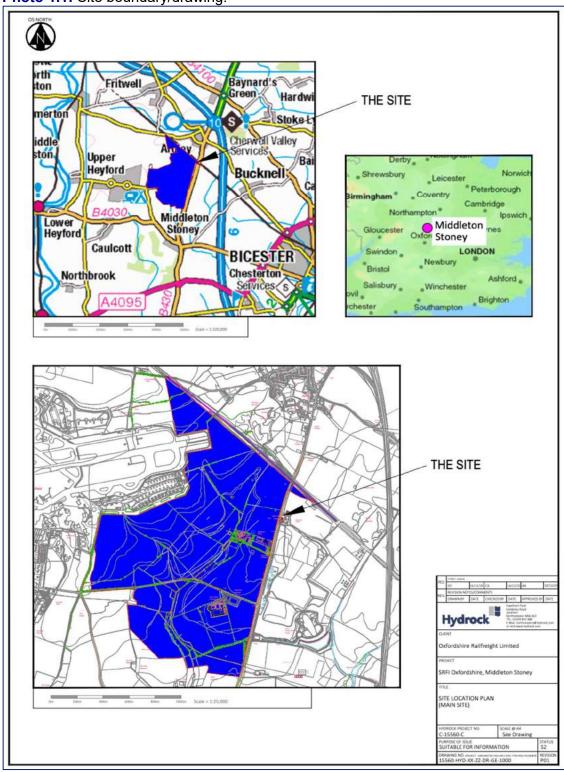
#### **Vengeance Weapons (V)**

V1 see Pilotless Aircraft. V2 see Long Range Rocket.

#### wwi

First World War 1 (1914 – 1918)

#### WWII


Second World War 2 (1939 – 1945)

#### **EXECUTIVE SUMMARY**

#### 1 **INSTRUCTION**

EOD Contracts Ltd (ECL), have been commissioned by HYDROCK (hereafter, "the Client") to undertake a desktop study for potential historic Unexploded Ordnance (UXO) contamination for the future works being carried out within the Highlighted areas provided within the CLIENTS drawing below (**Photo 1.1**).

Photo 1.1: Site boundary/drawing.



#### 2 SCOPE OF WORK

The scope of this EO Risk Assessment/Desk Study is to assess the likelihood of buried EO/UXO within the environs of "the site" (See **Photo 1.1**), in view of further development. A further aim was to evaluate the implication from UXO contamination during any future intrusive land use.

#### 2.1 LOCATION

The Site area is located east of RAF Heyford. Due to the size of the area there are multiple access and egress to different parts of the Site.



| TITLE          | DESCRIPTION (CENTRE OF SITE) |
|----------------|------------------------------|
| Site Post Code | OX27 7PJ (Ashgrove Farm)     |
| Grid Reference | SP 536262 / SP 5365626209    |
| OS (X)         | 453656                       |
| OS (Y)         | 226209                       |

#### 3 SOURCES OF UXO CONTAMINATION

- 3.1 Through the use of thorough research (utilising both modern and historic data) EOD Contracts Ltd deem that the main source of UXO contamination pertaining to the site are as follows.
  - Air delivered ordnance bombs and sub munitions/incendiaries.
  - Military Usage (potentially)
  - Close proximity to RAF Base

#### 4 KEY FINDINGS

- 4.1 Based on the information researched by EOD Contracts Ltd for the proposed works being carried out on the land to the NE, E, SE of RAF Heyford, EOD Contracts Ltd can conclude the following.
- There are no recorded incidents of the site being the subject of bombardment throughout WW1. However, the RAF station was operational throughout this period but only for training purposes.
- 4.3 Upper Heyford/RAF Heyford was targeted on at least four separate occasions throughout WW2. The exact location of where these bombs landed is not available (or likely exists).
- 4.4 The Site area itself would not have been considered a viable target to the Luftwaffe. However, its close proximity to RAF Heyford negates this fact. The Site area is situated at the eastern edge of the main runway, bombing accuracy throughout this period was very low meaning bombs dropped could easily overshoot their intended target.
- 4.5 There was no evidence to suggest that there was a HAA/LAA Gun Emplacement located within the Site area. However, again due to the Sites proximity to the RAF station this cannot be ruled out. This premise is also relevant when considering the placement of trenching/defensive positioning & military troop training.
- 4.6 The Site has remained relatively unchanged post WW2.
- 4.7 Therefore (to summarise) EOD Contracts Ltd deem that there is a MEDIUM Risk pertaining to items of UXO being located within the Site location.

#### 5 **RECOMMENDATIONS**

- 5.1 It is recommended that the following risk mitigation strategy be executed during phases of the project indicated previously indicated as a MEDIUM risk.
- 5.2 Communicating the risks, all stakeholders should be made aware of the UXO situation on the site and the possible impact it may have on the project works and day to day running of the district. Clients have a legal duty under the Construction Design & Management Regulations (CDM) and Health & Safety at Work legislation to provide Designers and Contractors with project specific information needed to identify hazards and risks associated with the design and construction work. The possibility that UXO may be encountered on site falls within the category of a significant risk and as such it should be addressed as early as possible in the lifecycle of the project.
- Further planning; the risks posed by UXO should be brought to the attention of the Project CDM Coordinators and other individuals with a responsibility for project safety and operations at the site. The matter of UXO should be considered critical to project safety and one requiring high priority action.
- 5.4 UXO safety awareness training should be given at all levels of site personnel and selected individuals on the project staff with relevant responsibilities. A competent person as part of the project safety induction course should provide the awareness training. It should be reinforced with specific safety briefings and toolbox talks to individuals involved in conducting intrusive earthworks.
- 5.5 Project overview and the responsibilities of those working on site with regard to duty of care and public safety.
- 5.6 UXO recognition and safety procedures to be followed on discovery of a suspicious object or the alarm being sounded.
- 5.7 Emergency procedures to be followed in the event of an explosion. Evacuation routes, muster stations and accounting for personnel.
- 5.8 Work permits, works methodology and specific UXO risk mitigation methods. Post-incident inspections and returning to normal works.
- Prior to any intrusive piling or drilling commencing, UXO safety testing and appropriate clearance certification into the ground to sufficient depth to provide clearance from UXO. This can be done using a progressive drilling process or (where large numbers of piles are to be placed and ground permitting) using a vehicle borne hydraulic system to push a magnetometer into the ground to test for the presence of UXO prior to piling.
- 5.10 UXO safety monitoring of all "at risk" excavations, including geotechnical or archaeological trial pits to be conducted during the project. This should be provided by a UK Home Office Authorised EOD/UXO Contractor using qualified EOD Engineer with specialist locators and detectors to scan the ground ahead of the excavation wherever possible.

#### 6 **SPECIFICALLY**

- 6.1 Geotechnical investigations, percussive drilling/trial pits/window/samples, require an EOD Engineer over watch.
- The removal of all building foundations within the site footprint can be removed down to natural ground level (including basements).
- New foundations with piling should be mitigated by the insertion of a magnetometer to encompass the pile position, this would be carried out using a CPT rig (magcone), the expected radius of the magcone is 1.5m therefore multiple piles could be checked.
- Non-Intrusive Magnetometer surveys generally prove inconclusive on "Brownfield sites", this is due to the high ferromagnetic background, therefore this methodology is not recommended for this site and shallow excavations should be overseen by a qualified EOD Engineer. This methodology could however be used on the grassed areas within the site confines.

- 7.0 EOD Contracts Ltd can supply a turnkey solution to your UXO requirements. Therefore, the following mitigation strategies can be supplied for land or water-based operations:
- 7.1 Intrusive survey using CPT (Cone Pressure Testing) or borehole equipment, supplying risk mitigation to all Borehole and Pile locations, down to a maximum bomb penetration depth determined within this document.
- **7.2** Non-Intrusive Survey using multiple array system with DGPS (*Digital Global targets be identified*.
- **7.3** Offshore, near-shore, estuarine and freshwater water environments magnetic, side scan and bathymetric supported by state-of-the-art DGPS.
- **7.4** The aforementioned surveys are supported with post processing of data and intrusive investigations if required.
- **7.5** EOD Engineer over watch using Suitably Qualified and Experienced Personnel, normally former British Army, Navy or RAF Bomb Disposal specialists.
- **7.6** Explosive Ordnance Safety Presentations.
- 7.7 EOD Contracts Ltd now offer Utility/Services Detection.
- 5.11



### 1.0 INTRODUCTION

#### 1.1 Instruction

EOD Contracts Ltd (ECL), have been commissioned by the Client to undertake a desktop study for potential historic Unexploded Ordnance (UXO) contamination for the future works being carried out within the Highlighted areas provided within the CLIENTS drawing below (**Photo 1.1**).

THE SITE

Baynard's Hardw

Brown Hardw

Brown Heyford

Brown Heyford

Brown Heyford

Caulcott

Brown Heyford

Caulcott

Brown Heyford

Caulcott

Caulcott

Chester for Stoney

Stoney

Chester of Middleton Heyford

Caulcott

Chester for Stoney

Salisbury

Winchester Southampton

Brighton

THE SITE

THE SITE

THE SITE

Photo 1.1: Site location/boundary provided by Client.

### 1.2 Scope of Work

The scope of this EO Risk Assessment/Desk Study is to assess the likelihood of buried EO/UXO within the environs of "the sites", in view of further development. A further aim was to evaluate the implication from UXO contamination during any future intrusive land

#### 1.3 Restrictions

It must be emphasized that a desk study can only indicate the potential for UXO to be present on the site. A geophysical survey and intrusive investigation are fundamentally important to provide proof that the site is free of the UXO threat.

This study was written with the site conditions prevailing at the time of the study and no liability can be accepted for any change in the condition of the area.

Please note that our appraisal relies on the accuracy of the information contained in the documents consulted and that EOD Contacts Ltd will in no circumstances be held responsible for the accuracy of such information or data supplied.

### 1.4 Sensitive Documentation

Information may be classified, restricted or deemed to be confidential in nature to EOD Contracts Limited, where such material has been gained a summary of the documentation has been approved.

### 1.5 Objective

The objective of this document is to define the UXO contamination routes as defined in Unexploded ordnance (UXO) A guide for the construction industry (C681) dated July 2015 and offer remediation methodologies if required.

#### 2.0 SOURCES OF INFORMATION

Research of the site's history, with regard to military usage, bombing raids and bomb impacts has been undertaken to establish the following:

- Frequency and intensity of enemy bombing raids for the site and immediate vicinity up to 500m.
- Bomb impacts and associated damage on the Site and in the immediate vicinity.
- The potential for UXO to remain on the Site and in the vicinity.
- Records of UXO removal activities for the Site and immediate vicinity.

The main sources of information consulted include:

- EOD Contracts Ltd company records
- Ministry of Defence records
- Central and Local Government Records
- Public Records Office (Kew)
- Historic Maps and Air Photography
- Open-Source information (Internet)
- Drawing Number Clients RED Line.

### 2.1 Ministry of Defence (MOD) Records

33 Engineer Regiment (Explosive Ordnance Disposal) Royal Engineers is the unit responsible for maintaining the records concerning conventional Bomb incidents, reports, clearances and related UXO matters. These records are known to be incomplete and are no longer supplied. Based on in-house information released by the MOD previously, it is considered unlikely that any information released will have any significant impact on the findings of this study.

### 2.2 Attack Record Keeping

In general, the quality and accuracy of bombing and shelling records prior to 1939 varied greatly from one region to another. Records relating to the limited air attacks on the United Kingdom are considered to be sufficiently accurate in urban areas to provide a reasonable level of confidence in determining the likelihood that an area was or was not bombed during this period. Wartime records, maps etc held within the civil archives are considerably more comprehensive than those still in existence within the MOD, where it is acknowledged that large numbers of records have been disposed of since 1945. Records from some areas, particularly rural districts or near large bodies of water should still be regarded as an incomplete picture of the extent and effect of the bombing campaign.

### 2.3 Attack Record Accuracy.

While an Air Raid was in progress it was inevitable that mistakes would be made in the transcription of rushed verbal reports into the written records. Discrepancies did occur between the total of bombs dropped against detonations witnessed. In some cases, records were made several hours after the event and mistakes were inevitable. Some reports were drafted before the full extent of the raid had been determined which has led to significant omissions in the records. Reports of raids on rural areas were often witnessed and submitted by untrained individuals and passed through third parties before being recorded. Suspect UXB's occasionally went unreported by local farmers and

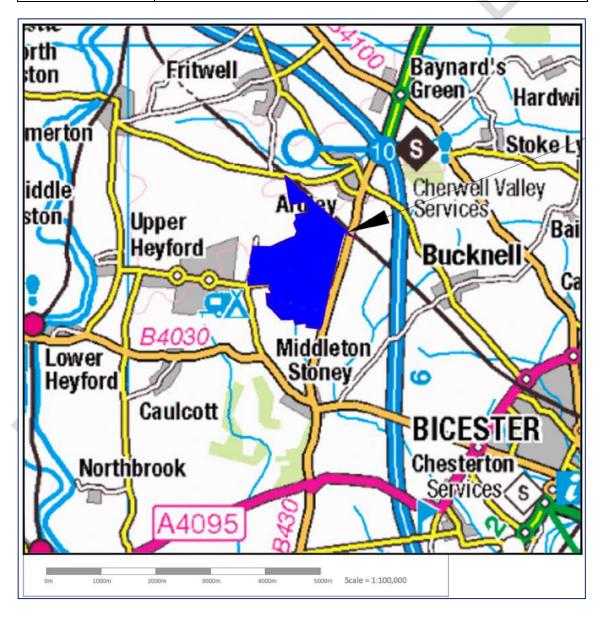
freeholders who saw the event as insignificant or were reluctant to report their findings for fear of valuable land or crops being destroyed by the authorities in their attempts to find the UXB.

#### 2.4 Errors and Omissions

The accuracy of bombing records has been shown to vary greatly; this may have been a result of the individual record keeper's expertise. Additionally, in some cases, errors occurred as a result of poor or incomplete transcription and copying. Some "errors and omissions" were intentional, designed to serve as dis-information to confuse German intelligence. So long after the event, official verification of such incidents has often proven to be impossible to obtain. At present, UXBs are found on construction sites and other locations where there had been no documentary evidence to suggest their presence. These events, although infrequent, do serve as confirmation that records cannot be considered definitive.

## 2.5 Bibliography

The significant published documents referred to during this study are listed below:


- HO 193 series from National Archives
- HO 198 series from National Archives
- HO 203/5 series (War-state and Society)
- The Blitz Then and Now Volumes 1 to 3
- AA Command Colin Dobinson
- German Air Raids on Britain 1914-1918
- Oxford City Council Records/Archives
- https://www.forces-war-records.co.uk/units/712/raf-upper-heyford
- https://en.wikipedia.org/wiki/RAF Upper Heyford
- <a href="https://www.oxfordmail.co.uk/news/17546873.unexploded-bomb-upper-heyford-cordon-lifted/">https://www.oxfordmail.co.uk/news/17546873.unexploded-bomb-upper-heyford-cordon-lifted/</a>
- <a href="https://archaeologydataservice.ac.uk/library/browse/issue.xhtml?recordId=115208">https://archaeologydataservice.ac.uk/library/browse/issue.xhtml?recordId=115208</a>
   7&recordType=GreyLitSeries
- https://www.heyfordparkresidents.org.uk/history/
- https://www.raf-upper-heyford.org/History.html
- https://military.wikia.org/wiki/RAF Upper Heyford
- <a href="http://www.hauntedhovel.com/rafupperheyford.html">http://www.hauntedhovel.com/rafupperheyford.html</a>
- https://www.thetimechamber.co.uk/beta/sites/military/uk-sites/raf-upper-heyford
- https://www.28dayslater.co.uk/threads/raf-upper-heyford-oxfordshire-march-2020.124025/
- http://www.bbc.co.uk/oxford/content/articles/2009/02/16/raf\_upper\_heyford.shtml
- https://www.sofo.org.uk/ww2-bombings/

#### 3.0 SITE DESCRIPTION AND DETAILS

### 3.1 Location

The Site area is located east of RAF Heyford. Due to the size of the area there are multiple access and egress to different parts of the Site.

| TITLE          | DESCRIPTION (CENTRE OF SITE) |  |
|----------------|------------------------------|--|
| Site Post Code | OX27 7PJ (Ashgrove Farm)     |  |
| Grid Reference | SP 536262 / SP 5365626209    |  |
| OS (X)         | 453656                       |  |
| OS (Y)         | 226209                       |  |



# 3.2 Description

**Photo 3.1:** The Site area at present predominantly undeveloped with only two obvious dwellings within the Site boundary (Farms). The remainder of the land appears to be agricultural in its usage.



### 3.3 Geology

Lithological Description:

A pale grey to off-white or yellowish limestone, peloidal wackestone and packstone with subordinate ooidal and shell fragmental grainstone; with recrystallised limestone and/or hardgrounds at some levels with rare sandy limestone, muddy limestone, calcareous mudstone and silicate mudstone/clay. Coralliferous units (including Fairford Coral Bed) occur at or close to the top.

Definition of Lower Boundary:

The base of the described peloidal wackestone, packstone or grainstone, overlying calcareous mudstone or fine-grained ooidal grainstones of the Hampen Formation or calcareous mudstone of the Rutland Formation.

Definition of Upper Boundary: Generally, a sharp, erosive boundary, with a cross-bedded shell-fragmental ooidal limestone of the Forest Marble Formation or mudstone of the Forest Marble Formation or Blisworth Clay Formation.

Thickness:

Up to 30 m, and typically 20 m thick in the type area.

Geographical Limits: through passage into the high energy ooid limestone of the Athelstan Oolite Formation, and north-eastward through Oxon and Bucks to the south Northamptonshire area, where it passes through gradual facies change into limestone with greater terrigenous influence of the Blisworth Limestone Formation. In the subcrop, passes south-east in Berkshire into the Athelstan Oolite and Chalfield Oolite formations of the Weald (Wyatt, 2011).

The Stroud to Cirencester area, where it passes south-westwards

Source: https://webapps.bgs.ac.uk/lexicon/lexicon.cfm?pub=WHL

#### 3.4 Current Site Use

See 3.2 Description & Annex A.

#### 3.5 Future Works

At the time of writing this report it is understood that the site will be redeveloped. Therefore, it is assumed that the following intrusive construction works will be carried out:

**NOTE:** The full scope of works has not been made available to ECL at the time of writing this report. However, it is believed that the carpark to the rear of the building is to be developed into 15 storey residential housing.

- Geotechnical investigations, percussive drilling/trial pits/window/samples
- Removal of building foundations to natural ground level
- Foundations with large diameter rotary bored piling

#### 4.0 HISTORICAL REVIEW

### 4.1 Historical Mapping & Aerial Photograph

**Annex B** contains all historic maps from which the below data has been analysed.

- Aerial Photo 1946 The Site area at this time contains only one steading (farm). The remainder of the land appears to be utilised for agricultural purposes. No real evidence can be seen of the RAF base in close proximity to the Site.
- Historic Map 1955 The Site has remained unchanged post WW2.
- Modern-day Aerial Photo, the Site at present is predominantly unchanged from the previous map. However, there has been significant development within close proximity to the Site location.

#### 4.2 WWI

Although many people associate wartime bombing with The Blitz during World War II, the first airborne terror campaign in Britain took place during the First World War. Air raids in World War One caused significant damage and took many lives. German raids on Britain, for example, caused 1,413 deaths and 3,409 injuries. Air raids provided an unprecedented means of striking at resources vital to an enemy's war effort. Many of the novel features of the war in the air between 1914 and 1918—the lighting restrictions and blackouts, the air raid warnings and the improvised shelters—became central aspects of the Second World War less than 30 years later. The East End of London was one of the most heavily targeted places. Poplar, in particular, was struck badly by some of the air raids during the First World War. Initially these were at night by Zeppelins, which bombed the area indiscriminately, leading to the death of innocent civilians.

The first daylight bombing attack on London by a fixed-wing aircraft took place on 13 June 1917. Fourteen German Gotha G bombers led by Squadron Commander Hauptmann Ernst Brandenberg flew over Essex and began dropping their bombs. It was a hot day, and the sky was hazy; nevertheless, onlookers in London's East End were able to see 'a dozen or so big aeroplanes scintillating like so many huge silver dragonflies'. These three-seater bombers were carrying shrapnel bombs, which, were dropped just before noon. Numerous bombs fell in rapid succession in various districts. In the East End alone 104 people were killed, 154 seriously injured and 269 slightly injured.

The gravest incident that day was a direct hit on a primary school in Poplar. In the Upper North Street School at the time were girls' class on the top floor, a boys' class on the middle floor and an infant class of about 50 students on the ground floor. The bomb fell through the roof into the girls' class; it then proceeded to fall through the boys' classroom before finally exploding in the infant class. Eighteen students were killed, of whom sixteen were aged from 4 to 6 years old. The tragedy shocked the British public at the time.

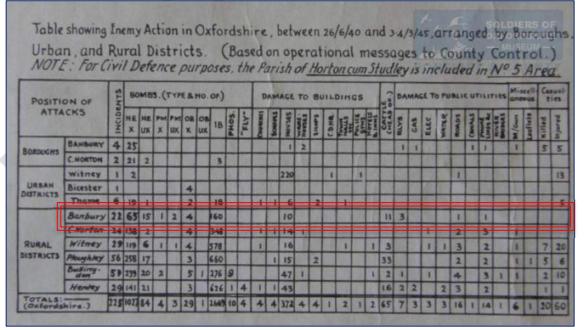
There are no recorded incidents of the Site being targeted during WWI.

#### 4.3 WWII

#### 4.4 The Blitz Around Britain

The 'Blitz' – from the German term Blitzkrieg ('lightning war') – was the sustained campaign of aerial bombing attacks on British towns and cities carried out by the Luftwaffe (German Air Force) from September 1940 until May 1941.

The Blitz began on 7 September, 'Black Saturday', when German bombers attacked London, leaving 430 dead and 1,600 injured. London was then bombed for 57 consecutive nights, and often during daytime too. London experienced regular attacks and on 10-11 May 1941 was hit by its biggest raid. German bombers dropped 711 tons of high explosive and 2,393 incendiaries. 1,436 civilians were killed. However, this proved to be the last major raid until January 1943.

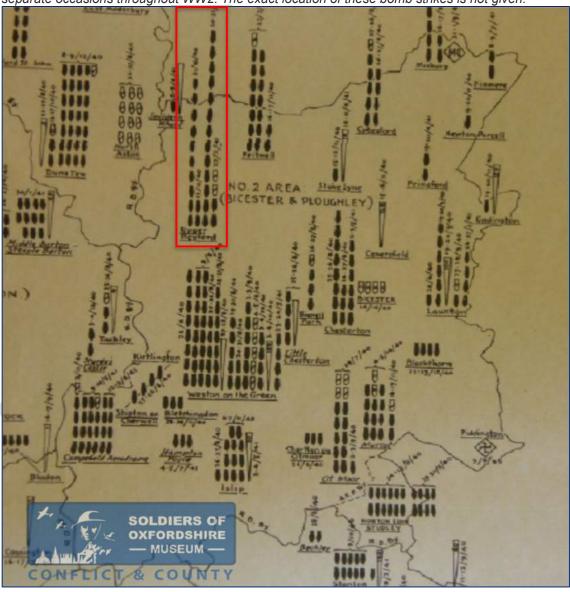

While London was bombed more heavily and more often than anywhere else in Britain, the Blitz was an attack on the whole country. Very few areas were left untouched by air raids. In relatively small compact cities, the impact of a severe air raid could be devastating.

From mid-November 1940, major provincial cities and industrial centres were targeted. In early 1941 another wave of attacks began, primarily against ports. Respite finally came from June when much of the Luftwaffe was directed against Russia and targets in the Mediterranean.

### 4.5 Oxfordshire during the Blitz

**PHOTO 4.1:** This shows that there were 3831 bombs of all types dropped over Oxfordshire, causing 20 deaths and 60 other casualties, as well as 65 head of cattle. Over 300 houses were damaged as well as other buildings and utilities.

**NOTE**: Upper Heyford falls within the Rural district of Banbury.




### **Upper Heyford & RAF Heyford During WW2**

Towards the end of World War 1, RAF Upper Heyford was established by the Royal Flying Corps. During World War 2 it served a number of units and was predominantly involved in the training of bomber crews in the 16th OTU (operational training unit), flying Handley Page Hampden bombers. Number 18 squadron, equipped with Bristol Blenheim Bombers, was also based at Upper Heyford at the start of the war by 1944, the airfield had three concrete runways and six aircraft hangars (Type A). After World War 2, the base was the home of the No. 1 Parachute Training School.

Although bomb maps indicating the exact location of strikes could not be identified ECL does hold within its archives the below map which shows the Site location.

**PHOTO 4.2:** The below map is number 2 of 5 maps drawn up by F.C. Condon, the Chief BRO (Bomb Recording Officer) in Oxfordshire in 1945. It shows that Upper Heyford was targeted on 4 separate occasions throughout WW2. The exact location of these bomb strikes is not given.



During the Cold War, the base was leased to the United States and taken over by the US Air Force and initially served as a base for the United States Air Force Strategic Air Force Command. Three other airfields that were surplus after World War 2 were also leased to the Americans, these being Brize Norton, Fairford and Greenham Common. On the 26th of June 1950, 801st Aviation Engineering Battalion moved to the site and extended the runway from 6000ft to 8300ft and constructed hard stands capable of holding the Strategic Air Commands B-36 & B-50 bombers. On the 15th of May 1951, the base was formally handed over to the USAF 3rd Air Force and 328th Bombardment Squadron moved to the base. The first Aircraft to arrive at the airfield were 15 B-50s, and six months later, the full complement of 45 aircraft arrived at the base, and in 1954, the B-36 Peacemakers started to arrive.

In the 1960's, the arrival of B-52 bombers started, and became a regular occurrence throughout the 60's. In the summer of 1962, the Soviets escalated their testing of nuclear weapons behind the Iron Curtain and this saw a detachment of U-2 spy planes operating from the base. Their mission was to take air samples from the upper atmosphere to try and determine the characteristics of the new weapons. In 1964, the base was redesignated the 3918th strategic wing. Later that year, the SAC (Strategic Air Command) bomber aircraft in the UK were stood down, and the bases at Greenham Common, Brize Norton and Fairford were put on care and maintenance and were in a state of deployment without equipment, ready to be reactivated in a short period of time.

With France pulling out of NATO in 1966, and American units being ordered to leave the country, Upper Heyford was now to serve as a base for the 66th Tactical Reconnaissance Wing. The Unit moved in during September of that year and brought with them the RF-101 aircraft. In 1968, the RF-101 were replaced with the new RF-4C Phantoms. However, these planes were moved from the base 2 years later. That same year the 20th Fighter Tactical Wing were moved to the base, because of the stand down of RAF Wethersfield. With the move of the 20th fighter Tactical Wing, new aircraft arrived at the base. These were the F-111 Aardvark tactical strike aircraft.

During the operation of RAF Upper Heyford, the base was involved in two major sorties. The first was Operation El Dorado Canyon, which was a strike on Libya, where 20 F-111's and 5 EF- 111 were launched from the base. The second was during Operation Desert Storm, where 1,798 combat sorties were flown, and 4,714 tonnes of ordnance dropped on various targets throughout Iraq. Upper Heyford saw zero losses during these operations. After the Cold War, and the Gulf War, RAF Upper Heyford was deemed surplus to requirements and gradually phased out. The last plane left on the 7th of December 1993. On the 30th of September 1994, the base was returned to the Ministry of Defence. The base now stands derelict, with various activities happening on site, and English Heritage have listed the site as a conservation area as it is the best-preserved Cold War airbase in England.

During the 1980's when the Cold War was at its height, the base was home to a Nuclear Peace Camp, similar to the one at Greenham Common. The camp was protesting the fact that there were planes on fast responses armed with Nuclear Weapons. One of the largest demonstrations happened in 1983, and over 700 people were arrested as a result.

#### 4.6 Abandoned Bombs/UXO

EOD Contracts records could find no evidence of any items of UXO abandoned in or around the subject site.

### 4.7 Anti-Aircraft Artillery

There is no evidence to suggest there was a HAA Gun Emplacement within the Site location. However, due to the nature of the Site location this cannot be ruled out.

### 4.8 **Prior Clearance Operations**

EOD Contracts could find no evidence to suggest that there have been any prior UXO clearance operations in or around the site footprint.

#### 4.9 V1 & V2 Bomb strikes

There is no evidence to suggest that the Site or its surrounding area was targeted with one of these weapon systems.

#### 5.0 SOURCES OF UXO CONTAMINATION

The main source of UXO contamination that are deemed a threat to the Site are:

- Air delivered ordnance bombs and sub-munitions/incendiaries.
- Buried or discarded items of ordnance.
- Close proximity to a military establishment

#### 5.1 GENERAL

EOD Contracts conclude that a **MEDIUM** risk is considered to exist with respect to UXO for areas within the site footprint.

- The Site area has remained relatively unchanged, with very little construction works carried out within its boundary.
- RAF Heyford/Upper Heyford was the subject of bombardment throughout WW2, being targeted on at least four separate occasions. The exact whereabouts of where these bombs landed is unknown.
- HAA gun emplacements could have been located within the Site boundary.

UXOs are essentially dangerous; therefore, further information on UXO and Safety is detailed in **Annex D**.

### 5.2 BOMB PENETRATION DEPTHS

### 5.3 Weapon Sub-surface Penetration.

Weapons penetrate a significant depth into the ground and other types of ammunition are designed to permit the weapon time to penetrate deeply into the target before detonating a short time after coming to rest or a considerable number of hours afterwards. The second reason is where the weapon has failed to function as designed becoming a UXB. A number of studies have been carried out into weapon penetration and it is an inevitable consequence of a number of variable factors acting on the bombs trajectory that figures can and do differ significantly. Careful consideration must be given to the weapon's velocity, trajectory and shape. Also surface conditions and subsurface geology. The largest of the common German bombs, (500kg) can penetrate to significant depths given favourable conditions for penetration. In the case of projectiles and shells, the potential for deep penetration is significantly less.

#### **5.4** Penetration Assumptions.

A number of assumptions were used in determining the maximum threat depth within the project footprint, which were.

## **5.5** Factors Affecting Penetration

The penetration of sub-surface bombs will be affected by the following:

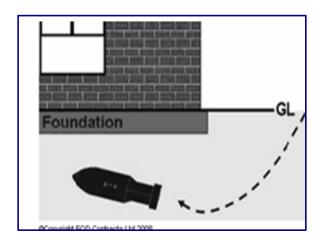
- Height of release
- Weight, shape and design of bomb
- Aerodynamic qualities
- Angle of flight and impact
- Nature of impact surface

#### Nature of sub soil

The expected bomb depths for the site assuming the following criteria:

- 15,000 feet, the vast majority of bombs were dropped from height to avoid AA fire and balloons
- General Purpose Bombs of 50kg to 1000kg
- Near Vertical impact 80 to 90 degrees
- Surface geotechnical conditions are made ground
- Subsurface geotechnical conditions are generally clays.

Therefore, the expected depths for Air dropped UXBs on site are indicated in **RED** in the following table:


TABLE 5.1: Bomb Penetration Depths

|                    | Bomb Weights |         |       |         |
|--------------------|--------------|---------|-------|---------|
| Sub Soil Type      | 50kg         | 250kg   | 500kg | 1000kg  |
|                    |              |         |       |         |
| Soft Rock          | 2.442        | 5.016   | 6.006 | 7.062   |
| Gravel             | 2.442        | 5.016   | 6.006 | 7.062   |
| Sand               | 2.442        | 5.016   | 6.006 | 7.062   |
| Chalk              | 3.7          | 7.6     | 9.1   | 10.7    |
| Shingle            | 3.7          | 7.6     | 9.1   | 10.7    |
| Dry Clay           | 3.7          | 7.6     | 9.1   | 10.7    |
| Wet Sand           | 5.55         | 11.4    | 13.65 | 16.05   |
| Wet Clay           | 5.55         | 11.4    | 13.65 | 16.05   |
| Average Offset (m) | 0.8-1.6      | 1.6-3.7 | 3-4.5 | 3.4-5.3 |

Bombs on penetration of the surface do not follow a straight-line trajectory they can and do curve; this is called a "J" curve where the bomb's path bends back towards the surface. This gives what is known as the Offset, which may place a bomb under a structure and at a shallow depth.

### Figure 5.1 – 5.3: Sub-Surface Trajectories & Safety Buffers

Figure 5.1: Common Sub-Surface Trajectory & Figure 5.2: Anomalous Sub-Surface Trajectory



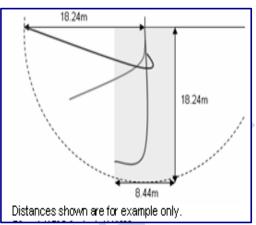
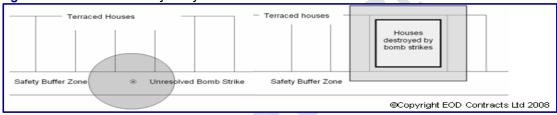




Figure 5.3: Sub-surface Trajectory Incursion



**NOTE:** the common sub-surface trajectory will follow a path best described as a 'J' curve. The curve can result in a weapon coming to rest some distance from its impact point. The distance from impact point to resting place is referred to as the "Off set Distance and is normally considered to be 1/3 of the depth. This mechanism can permit a weapon to strike outside a building and travel below ground finally coming to rest within the building footprint. Where a strike is known to have occurred close to a building or structure such as a dock wall, a danger zone should be considered to exist around the area of the strike of sufficient size to accommodate the likely sub-surface travel distance for the weapon.

**NOTE:** the typical offset distance is shown as the shaded area, on rare occasions a near surface deflection of the weapon can occur and the offset distance can be substantially increased up to 5/4 of the penetration depth. This mechanism does however reduce the penetration depth considerably with the net result that while the offset is increased the overall travel distance is for the most part unaffected.

**NOTE:** scenario 1 (Figure 5.1) shows a hypothetical bomb strike outside a structure or building. The strike location has been accurately identified and as a consequence; a potential danger zone (circular shaded area) can be placed around the point of impact. Scenario 2 shown top right; depicts a direct HE bomb or Incendiary strike within a building which totally destroyed the building. In circumstances such as this UXB entry the building rubble may have concealed hole and the weapon may still be present within the building footprint or it may have travelled subsurface and come to rest outside the footprint. Here the danger zone (square shaded Area) extends outwards on all sides of the original building footprint.

#### 5.6 Recent UXO finds within the UK

The present-day threat of finding items of UXO within the UK is still high, as highlighted within **Annex E**.

**PHOTO 5.1**: On (or around the) 2<sup>nd</sup> April 2019. Two items of ordnance were located within a construction site on Camp road (Upper Heyford). The two devices were subsequently destroyed by a bomb disposal team from the RAF.

**SOURCE**: https://www.oxfordmail.co.uk/news/17546873.unexploded-bomb-upper-heyford-cordon-lifted/



#### 6.0 RISK ASSESSMENT

#### 6.1 Risk Assessment

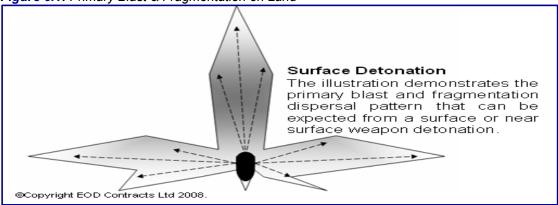
Assessing both the likelihood of occurrence and the consequences of the encounter has derived the overall risk for the site from unexploded ordnance. Review of the site's history and geographic location can provide an overall likelihood of encounter factor, which is used in the subsequent determination of a risk level when a Figure can be determined for the consequence.

#### 6.2 Likelihood of Encounter

Given the study findings and other criteria (See **Annex F** Tables) it is considered that there is a **MEDIUM** risk of encountering UXO within the site footprint. This finding is based on assessment of all of the available information.

#### 6.3 Consequence of Encounter

The consequence (See **Annex D**) of an uncontrolled encounter with UXO, given its lethal design and its unpredictable nature could be catastrophic and warrants a high severity factor. With regards to the consequences, the following factors were considered:


The project works may make use of a number of common ground investigation and construction techniques in its methodology during the project. Any intrusive groundwork has the potential to encounter UXO.

Intrusive earthwork, piling driving and dynamic ground compaction are by nature, aggressive, significant force (kN) is often required to achieve the desired results. As a precaution it is prudent to assume that any external stimulus, no matter how slight, may result in an unstable weapon detonating.

Records of encounters with UXO, particularly where plant machinery has been involved have resulted in detonations of the items with varying degrees of consequence; ranging from slight injuries sustained to piling contractors when a bomb detonated at 6.0m bgl to fatal injuries sustained to a construction worker while conducting near surface machine works on a motorway.

Detonation on land; the effects of a detonation at depth will be more localised and less destructive than one occurring on the surface. Figure 6.1 shows an illustration of the primary blast and fragmentation dispersal from explosive ordnance when it detonates on the surface. The weapon's design, and other key factors such as the ratio of explosive charge weight to total weapon weight (CWR) and the Net Explosive Quantity (NEQ) will determine the size and effects of a blast. The effects will also be enhanced or reduced by a number of factors including, the presence of other energetic materials in close proximity to the blast or if the weapon is buried or exposed on the surface. As a guide Figure 6.1 gives an indication of the likely blast radius for common types of UXO.

Figure 6.1: Primary Blast & Fragmentation on Land



In addition to the dangers of explosion, many common chemicals used in the manufacture of explosive ordnance fillings are; in sufficient quantity, and level of exposure, toxic or poisonous. Although it is unlikely that such chemicals would be encountered in significant quantity to represent a significant risk to personnel, leakage or venting could pose a risk to the local marine environment. In addition to heavy metals; copper, lead, zinc etc used in the weapon body and fuze, hydrocarbon propellants such as Kerosene may also be present.

#### 6.4 Risk Level

The overall risk has been determined to apply to all of the ground within the site footprint.

The prevailing risk level has been determined to be **MEDIUM** risk.

#### 6.5 Encounter Consequences

It is acknowledged that when viewed from a "likelihood versus consequence" scenario; the consequences of an explosion may have the potential to include:

- Multiple casualties or fatalities.
- Extensive damage to high value private and public assets and property.
- Significant delays to the construction project.

### 6.6 Those at Risk

The risk is considered to have the potential to pose a direct and indirect threat to a wide range of individuals and facilities. While the impact on fixed assets can be estimated based on the asset's proximity to the seat of the explosion. The impact to transient assets and people will, for the most part, be the result of both; proximity to the explosion and the time at which the event occurs. The overall impact therefore has the potential to range from little more than a minor localised event to a level, which may be considered to be a more widespread major incident involving some or all of the following:

- Construction and other specialist personnel carrying out the work.
- General public in open spaces, at their places of work and transient population on foot or road users in proximity to the construction work.
- Public services including transport, water, gas and electricity supplies.

- Public facilities, including buildings, vehicles, other high value assets and equipment.
- Private business property including construction equipment.
- Private residential property in proximity to the work.

#### 6.7 At Risk Activities

Based on our understanding of the scope of the most common construction projects, it is considered that a wide range of intrusive processes may be required to complete the project. Any intrusive groundwork's have the potential to encounter UXO and each activity therefore has a degree of risk attached to it. The severity or level of the risk is derived as a consequence of activity's; location, methodology and volume or quantity of risk material to be worked, at risk activities are considered to include:

- Intrusive geotechnical and archaeological investigations including drilling and pitting.
- Foundation construction, trenching and other excavations.
- Intrusive construction works, which may include piling. The study findings and other criteria (See Annex F Tables) it is considered that there is a MEDIUM risk of encountering UXO within the site footprint.

#### 7.0 CONCLUSIONS

Based on the information researched by EOD Contracts Ltd for the proposed works being carried out on the land to the NE, E, SE of RAF Heyford, EOD Contracts Ltd can conclude the following.

There are no recorded incidents of the site being the subject of bombardment throughout WW1. However, the RAF station was operational throughout this period but only for training purposes.

Upper Heyford/RAF Heyford was targeted on at least four separate occasions throughout WW2. The exact location of where these bombs landed is not available (or likely exists).

The Site area itself would not have been considered a viable target to the Luftwaffe. However, its close proximity to RAF Heyford negates this fact. The Site area is situated at the eastern edge of the main runway, bombing accuracy throughout this period was very low meaning bombs dropped could easily overshoot their intended target.

There was no evidence to suggest that there was a HAA/LAA Gun Emplacement located within the Site area. However, again due to the Sites proximity to the RAF station this cannot be ruled out. This premise is also relevant when considering the placement of trenching/defensive positioning & military troop training.

The Site has remained relatively unchanged post WW2.

Therefore (to summarise) EOD Contracts Ltd deem that there is a MEDIUM Risk pertaining to items of UXO being located within the Site location.

#### 8.0 RECOMMENDATIONS

It is recommended that the following risk mitigation strategy be executed during phases of the project indicated previously indicated as a **MEDIUM** risk.

Communicating the risks, all stakeholders should be made aware of the UXO situation on the site and the possible impact it may have on the project works and day to day running of the district. Clients have a legal duty under the Construction Design & Management Regulations (CDM) and Health & Safety at Work legislation to provide Designers and Contractors with project specific information needed to identify hazards and risks associated with the design and construction work. The possibility that UXO may be encountered on site falls within the category of a significant risk and as such it should be addressed as early as possible in the lifecycle of the project.

Further planning; the risks posed by UXO should be brought to the attention of the Project CDM Coordinators and other individuals with a responsibility for project safety and operations at the site. The matter of UXO should be considered critical to project safety and one requiring high priority action.

UXO safety awareness training should be given at all levels of site personnel and selected individuals on the project staff with relevant responsibilities. A competent person as part of the project safety induction course should provide the awareness training. It should be reinforced with specific safety briefings and toolbox talks to individuals involved in conducting intrusive earthworks.

Project overview and the responsibilities of those working on site with regard to duty of care and public safety.

UXO recognition and safety procedures to be followed on discovery of a suspicious object or the alarm being sounded.

Emergency procedures to be followed in the event of an explosion. Evacuation routes, muster stations and accounting for personnel.

Work permits, works methodology and specific UXO risk mitigation methods. Post-incident inspections and returning to normal works.

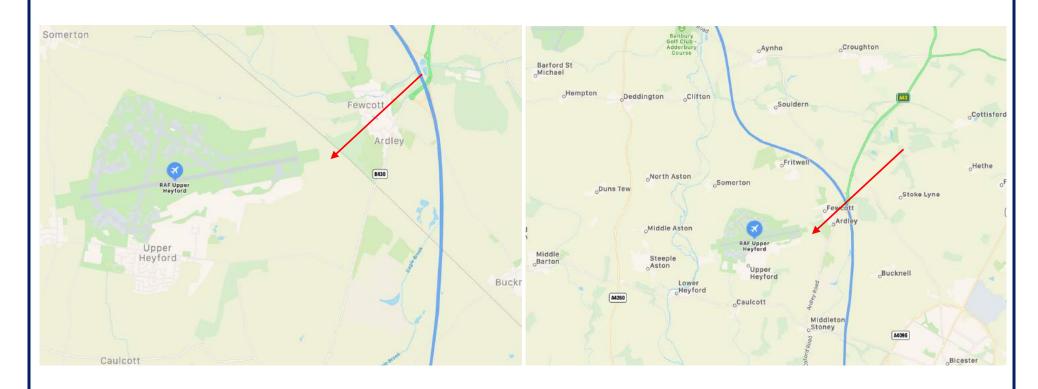
Prior to any intrusive piling or drilling commencing, UXO safety testing and appropriate clearance certification into the ground to sufficient depth to provide clearance from UXO. This can be done using a progressive drilling process or (where large numbers of piles are to be placed and ground permitting) using a vehicle borne hydraulic system to push a magnetometer into the ground to test for the presence of UXO prior to piling.

UXO safety monitoring of all "at risk" excavations, including geotechnical or archaeological trial pits to be conducted during the project. This should be provided by a UK Home Office Authorised EOD/UXO Contractor using qualified EOD Engineer with specialist locators and detectors to scan the ground ahead of the excavation wherever possible.

#### 9.0 SPECIFICALLY

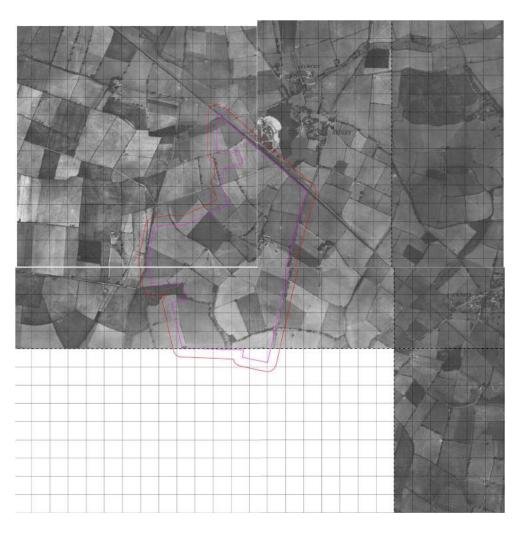
Geotechnical investigations, percussive drilling/trial pits/window/samples, require an EOD Engineer over watch.

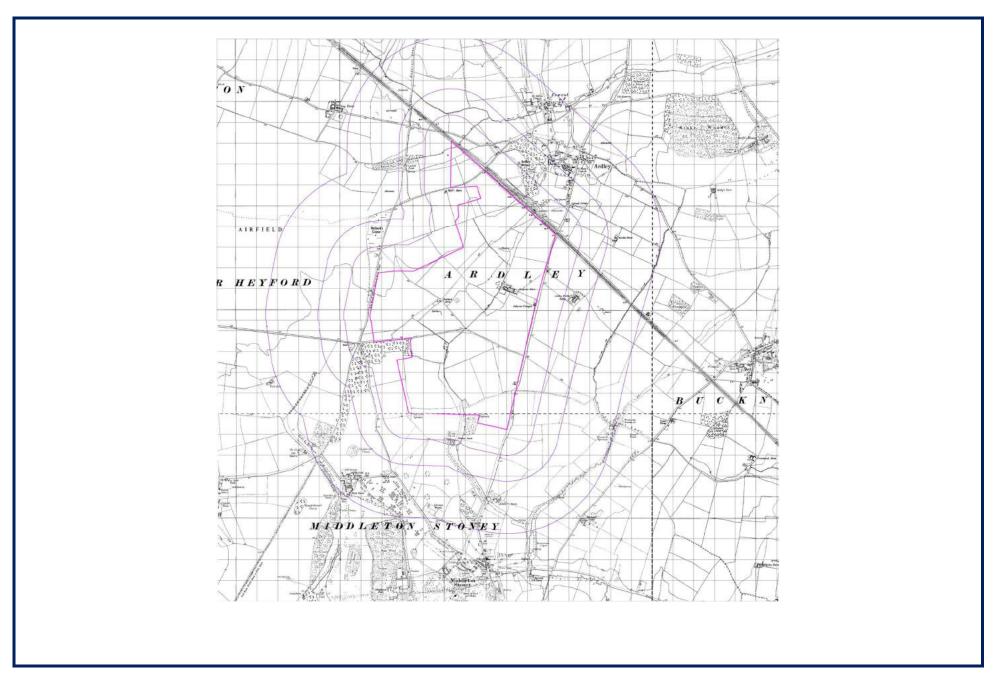
The removal of all buildings within the site footprint can be removed down to natural ground level (including basements).


New foundations with piling should be mitigated by the insertion of a magnetometer to encompass the pile position, this would be carried out using a CPT rig (magcone), the expected radius of the magcone is 1.5m therefore multiple piles could be checked.

Non-Intrusive Magnetometer surveys generally prove inconclusive on "Brownfield sites", this is due to the high ferromagnetic background, therefore this methodology is not recommended for this site and shallow excavations should be overseen by a qualified EOD Engineer. This methodology could however be used on the grassed areas within the site confines.

### Annex A


### **SITE LOCATION**


**NOTE:** Site indicated by red arrow. Due to the size of the Site area, there are multiple access and egress.



## Annex B

# **HISTORIC MAPPING**







#### **Annex C**

#### **BOMB RAIDS WWI**



NOTE: Site indicated by red arrow.

**Annex D** 

### **EXPLOSIVE ORDNANCE SAFETY AND INFORMATION**

#### **UNEXPLODED ORDNANCE**

Since the end of WWII, there have been a limited number of recorded incidents in the UK where bombs have detonated during engineering works, though a significant number of bombs have been discovered.

The threat to any proposed investigation or development on the site may arise from the effects of a partial or full detonation of a bomb or ordnance item. The major effects usually being shock, blast, heat and shrapnel damage. It should be noted that the detonation of a 50kg buried bomb could damage brick/concrete structures up to 16m away and unprotected personnel on the surface up to 70m away from the blast. Larger ordnance is obviously more destructive. Table 1 denotes recommended safe distance for UXO.

Table 1: Safety Distances for Personnel

| UXO (Kg) | Safety Distances (m) |             |            |             |  |  |
|----------|----------------------|-------------|------------|-------------|--|--|
|          | Surface UXO          |             | Buried UXO |             |  |  |
|          | Protected            | Unprotected | Protected  | Unprotected |  |  |
| 2        | 20                   | 200         | 10         | 20          |  |  |
| 10       | 50                   | 400         | 20         | 50          |  |  |
| 50       | 70                   | 900         | 40         | 70          |  |  |
| 250      | 185                  | 1100        | 120        | 185         |  |  |
| 500      | 200                  | 1250        | 140        | 200         |  |  |
| 1000     | 275                  | 1375        | 185        | 275         |  |  |
| 3000     | 450                  | 1750        | 300        | 450         |  |  |
| 5000     | 575                  | 1850        | 400        | 575         |  |  |

Explosives rarely become inert or lose effectiveness with age. Over time, fuzing mechanisms can become more sensitive and therefore more prone to detonation.

This applies equally to items that have been submersed in water or embedded in silt, clay, peat or similar materials.

Once initiated, the effects of the detonation of the explosive ordnance such as shells or bombs are usually extremely fast, often catastrophic and invariably traumatic to the personnel involved.

The degradation of a shell or bomb may also offer a source of explosive contamination into the underlying soils. Although this contamination may still present an explosion hazard, it is not generally recognised that explosives offer a significant toxicological risk at concentrations well below that at which a detonation risk exists.

#### **TYPES OF ORDNANCE**

**German Air Delivered Ordnance**. Technical information on the nature and characteristics of the ordnance used by the German Air Force during both world wars has been available for a number of years. Assessment that began during the 1930's has continued to the present day. Experts have conducted research in many countries as part of national research programmes and as individual research projects. Consequently, a well-informed assessment of the threat posed by unexploded

ordnance, and the hazards that they represent, can be made with a high degree of confidence.

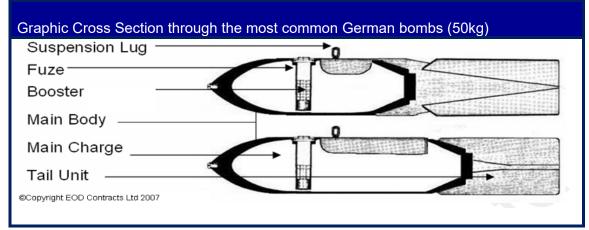
**Terminology**. It should be noted that two terms used in bomb records can lead to some confusion as to their meaning and therefore significance. The term <u>Unexploded Bomb</u> (UXB) refers to a bomb that has fallen, failed to function and has been subsequently dealt with and removed from the site. The term <u>Abandoned Bomb</u> (A/UXB) refers to a UXB that could not be found or recovered, or the decision was taken not to pursue the matter further. Consequently the unexploded bomb remains where it came to rest when it was dropped or fell to the present day. It should also be noted the word 'bomb' can be used to describe an airdropped bomb or a shell as in some cases no differentiation was made and the term was interchangeable.

**Abandoned Bombs**. The records of known abandoned unexploded bomb locations in the London area were released in response to a written Parliamentary Question from Simon Hughes. (Hansard: Volume; 282. Dated 15<sup>th</sup> October 1996). The information was provided by the Ministry of Defence (MOD) and supplied under an indemnity.

**Explosive Ordnance Failure Rates**. Over the course of both World Wars a considerable quantity of ordnance dropped on UK targets failed to function as designed and subsequently penetrated the ground without exploding. Information gathered during the war by the MOD and its research partners provide typical failure rates for different types of ordnance. Figures significant to this study are:

- 10% of all German airdropped bombs failed to function as intended.
- 30% of all anti-aircraft and other types of shells failed to function as intended.

**Deductions & Considerations**. The following points were considered as part of the assessment and have been given due consideration:


Records were found that indicated that the general area was subjected to heavy bombing.

Bombs, which struck previously, hit or burned out targets and did not function; consequently their impact was unseen and therefore no report was ever made.

In all likelihood, the local anti-aircraft battery would have fired a far higher number of shells than the bombers dropped HE bombs. Contamination by anti aircraft shells cannot be rules out.

**Generic German Bomb Types**. The majority of German bombs dropped were 50kg in weight, accounting for approximately 16% of the total bombs dropped. The range of common bombs increased in weight to a maximum of 1700kg. Regardless of size, German bombs were fitted with one or more Electrical Condenser Resistance (ECR) fuzes many of which included a mechanical component. The fuzes were mounted transversely in the bomb body with the booster directly below, and in contact with, the fuze. The booster; sometimes referred to as the Gaine, is composed of a sensitive explosive material (Picric Acid). Picric Acid is known to deteriorate over time becoming increasingly unstable. The internal layout of two common German bombs and a German fuze is shown in Figures 6.1 & 6.2.

FIGURE 1: Generic German Bomb Design.



**NOTE:** the diagram shows that there can be a significant difference in the quantity of High Explosive contained within bombs of similar size and shape; the Grade 1 bomb on the bottom having 30% more HE than the Grade 2 shown at the top. This serves to demonstrate the importance of an accurate identification of any item of UXO.

FIGURE 2: Generic German Bomb Fuze Design.

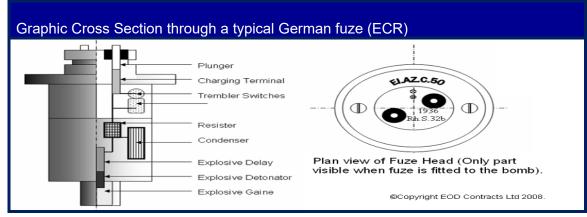
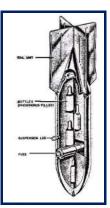



FIGURE 3: Range of HE bombs dropped on the United Kingdom.



**NOTE:** The smaller sub-munitions (Bomblets) seen to the right, ranged in size between 1 and 3kg, were dropped in large numbers and were intended as incendiary bombs, anti-personnel bombs or as bombs filling both roles. The smaller bomblets were dropped in larger container bombs designed to hold between 360 and 620 of the bomblets. The containers were designed to burst open at a predetermined height above ground level, dispersing the bomblets over a wide area. Air raid damage was far greater by using both incendiary, and HE bombs on a single raid. The fires started by the incendiaries being rapidly spread by the blast waves from the HE bomb. This scenario was shown to devastating effect on the 14<sup>th</sup> February 1945 in the German city of Dresden. Where fires started and spread by the bombing increased to a point where the oxygen was being sucked into the flames at such a high speed that the fire became a "Fire Storm". At the time the city's population had increased due to a high number of refugees fleeing the Russian advance to the east, the exact civilian death toll from fire and suffocation will never be known, but is considered to be somewhere between 25,000 and 100,000.


**High Explosive (HE) Bomb.** Some of the most common type of ordnance to be dropped on the United Kingdom, HE bombs are often the type encountered as UXBs. Relatively thick cased, they are still recovered in remarkably good condition. Ranging in size from 50 to 1700 kg, their typical release height (1,500m) allowed them to penetrate deep into the ground as a result of design or flaw. Towards the end of the bombing campaign, as steel became scarce the German Engineers produced a range of bombs that used steel reinforced concrete as the bomb body. Figure 6.3 shows the range of steel HE bombs dropped on the UK.

**Incendiary Bomb.** The larger incendiary bombs, containing bottles of white phosphorus and an incendiary mixture contained within a thin steel case were designed to burst on contact with the ground. A fixed dispenser on the aircraft delivered the smaller type of bomb or 'Bomblet' to the target area in container bombs or; both types of container would open dispersing the smaller Incendiary bombs. Relatively small and light they were unlikely to penetrate the ground to any significant depth. However, once concealed in bomb damage rubble or below water they were easily missed and are still unearthed today from in-fill and drained land. Later versions of the incendiary bomb contained an additional explosive charge used as a short delay "Booby Trap" device that contained a significant amount of high explosive. The Booby Trap component was designed to kill or injure fire fighters and hinder the damage control. See Figure 4.

### FIGURE 4: Incendiary Bombs.

### Common German Incendiary Bombs





Left, 1kg incendiary bomblet, and right a 50kg incendiary bomb containing bottles of white phosphorus.

**NOTE:** Incendiary bomblets were made of a flammable alloy similar in appearance to aluminium, which resists corrosion well. The tail unit was made of thin tin-plate steel and is more prone to have rusted away. Some Incendiary models were fitted with a High Explosive (HE) steel nose. With the tail and explosive nose attached the bomb was 480mm long.

Blast Bomb / Parachute Mine. The parachute mine was extensively used on land and at sea and was fitted with specialist fuzes designed to trigger the weapon at a predetermined altitude, water depth or to switch on other magnetic influence mechanisms to trigger the weapon when a ship approached (Magnetic or Acoustic influence). While early versions were based on the standard 1000kg SD Bomb case others were specially designed and manufactured with an aluminium body, making them extremely difficult to detect using magnetometers. The thin cased versions would normally disintegrate on impact on land and are normally considered to pose little threat to work on land based projects, but the risk increases significantly on projects over water or in marshland. Thicker cased versions however will survive impact and pose a significant risk regardless of the local ground conditions. (See Figure 5)

FIGURE 5: Common Airdropped Mines.

#### Parachute & Ground Mines



**NOTE:** all mine fuzes were designed to arm after deployment from the ship, submarine or aircraft, some fuze designs incorporated anti-removal booby traps. Unexploded mines found today are the result of a failure within the arming mechanism or procedure whereby the mine never fully armed. Sudden shock or jarring of a weapon in this state has the potential to complete the arming sequence and could result in the mine detonating with lethal consequences.

Non-Steel Cased Bombs. Used primarily in the construction of training or practice bombs, some high explosive variants were introduced towards the end of the war. With resources running scarce, German Engineers produced a small number of blast bombs with a concrete body. The design utilised a steel framework onto which concrete was cast. The explosive filling was also contained within a thin steel container within the bomb body. Very few "concrete" bombs were dropped on the UK. In common with standard steel cased weapons, this type of bomb can be detected using standard magnetometer detection techniques (albeit; providing a smaller ferromagnetic signature than its all steel counterparts). This type of bomb represents a very small percentage of the total number of bombs dropped worldwide and are not considered a significant threat, particularly when viewed from an overall bomb threat in the UK.

**Anti-Personnel Bomb.** Generally these were small weapons of 1-3 kilograms in weight and are often referred to as 'Bomblets' and possessing similar ground penetration ability as the Incendiary Bomblets. They were often located during the post-raid searches. This type of bomb has been recovered within the bomb rubble being cleared or used as in-fill on construction projects and poses the same potential to function as the Incendiary bomb with a greater potential to cause localised casualties.

**Specialist Bomb.** These types of bombs were designed to meet a specific mission requirement. Typically, this would be a design modification or special fusing to enable the bomb to destroy hardened/armoured targets or deep buried and sub-marine targets. Similar to the more common HE bombs, they differ in that they rarely contain large amounts of high explosive. Therefore the consequence of a detonation is reduced but remains a significant risk, particularly when the detonation occurs on or near the surface.

Depth Bombs & Depth Charges. These types of weapons were designed to meet a specific mission requirement. Typically, the modifications would include the type of explosive filling and special fusing to enable the bomb to penetrate to a significant depth into the ground or water before detonating. Depth bombs intended for maritime attack and sub-marine targets would be fitted with one or more fuzes, one of which would be a hydrostatic fuze designed to detonate the bomb at a predetermined depth. The bomb would be fitted with an anti skip ring to reduce the deflection of the bomb as it entered the water. Similar in many ways to Depth Bombs, Depth Charges were exclusively designed to detonate at a predetermined depth. This was achieved by fitting the Charge with a short time delay or hydrostatic fuze. Depth bombs; having a similar configuration to general purpose bombs had the potential to penetrate deeply into the sea bed where an attack occurred in the relatively shallower water of a dock.

Unmanned Rocket Bombs & Missiles. The most famous in this category of weapons were the V1 (Fi103 flying bomb) commonly known as the Doodlebug and the Larger V2 (A4 missile). Both V1 & V2 with high explosive warheads containing 850kg & 1000kg (respectively) represent some of the largest weapons to land in the United Kingdom. Both types were built in a similar manner to an aircraft and would generally disintegrate on impact even if the warhead failed to detonate. The impact would spread debris over a wide area which was difficult to miss and any resulting unexploded 'V' weapons were comprehensively dealt with at the time. For this reason they are rarely encountered on land. However, where a 'V' weapon landed in water the opportunity for the event to have been missed and/or follow-up action abandoned was greater and they continue to pose a significant risk. Other, less well known rocket bombs were also produced by the Luftwaffe to attack maritime targets. Some were equipped with TV/Radio guidance from the parent bomber. Two of the most common were the Fritz X which consisted of an adapted SD1400kg bomb and the Henschel Hs293 which was based on a smaller 500kg bomb. No record of one having been recovered on land as a UXB can be found but these large HE bombs are considered to pose a significant risk, particularly to maritime projects. No records were found to indicate this type of bomb was ever used on targets in the area.

**Photoflash Bomb.** This type of bomb was dropped by specialist "Pathfinder" aircraft and although this type of bomb can be included with the category of specialist bombs, it is worthy of specific comment due to the danger it may still pose. Photoflash bombs were designed to explode with a blinding flash, rather like a camera flashbulb. They were used to enable photographs to be taken of targets at night and also served to identify ground targets for other aircraft to attack. The speed at which the highly energetic filling detonated, and energy it produced in doing so, was significant. Although these bombs were thin skinned and are prone to corrosion the functioning of one can be compared to a high explosive bomb detonation.

High Explosive Shells & Projectiles. As mentioned previously, one of the most common sources of UXO contamination encountered in the United Kingdom is High Explosive Shells and Projectiles. This is most commonly found to be as the result of firing practice ranges, bombardment and anti-aircraft defence, the latter often positioned to defend Major cities and Strategic installations and ports from German Bombing. Anti Aircraft Shells and projectiles are generally smaller (Up to 4.7" inch diameter) than the airdropped bombs and as a consequence were more easily missed amongst the bomb rubble. However, coastal bombardment guns could fire a shell weighing 1000kg, (larger than most common airdropped bombs) and capable of significant ground penetration. The generic layout of a projectile can be found at Figure 6.6. It should be noted that the fatal incident on the German autobahn in 2006 was thought to be the result of a shell or projectile detonating, not an airdropped bomb as first reported.

The Fuzes used in Anti-Aircraft Ammunition were designed to ensure the projectile would detonate in contact with the target, or at a pre-set altitude, or in close proximity to the target. The fuzes employed different means to achieve this, including; direct impact, or indirect impact, Barometric, Delay and Electro-magnetic influence. Some were fitted with more than one fuze, which served to reduce the chance of the projectile falling to earth and detonating. Artillery fuzes are activated during the firing process, using the projectile's acceleration or spin within the gun barrel to switch off the safety mechanisms. For this reason fired projectiles are considered more dangerous than unfired ones.

FIGURE 6: Generic Shell Design



**Other Types of Ordnance**. The following additional sources of ordnance types have been considered, and inherent risks taken account of:

**Flares and Pyrotechnics.** Flares and pyrotechnics were used for a variety of reasons throughout the war and continue to be found today in the most unlikely places. However, due to the thin casings of these weapons a high level of corrosion is likely to have occurred since manufacture. Depending on the specific nature of the weapon, this effectively renders them inert with the exception of any white phosphorous content or explosive gaine.

Land Service Ammunition (LSA). While as the name implies this type of ammunition was designed for use on land, it was also issued to naval personnel for close protection of vessels and their crew and to provide a limited offensive capability even to relatively small craft. This type of ammunition includes some shells and projectiles such as those covered previously. Other natures of LSA range from Small Arms Ammunition (SAA), having little or no high explosive content to Grenades, Mortars and Rockets which may pose a risk of detonation due to their explosive content and the design of their fuzes (impact) which; if subjected to sufficient shock or friction may result in the weapon functioning. (See Figure 7)

### FIGURE 7: Common Categories of Land Service Ammunition

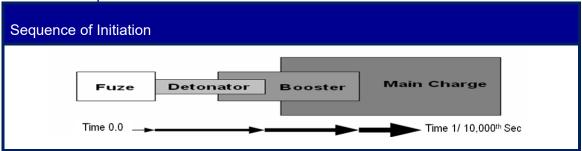
### **Land Service Ammunition**

### Small Arms Ammunition



#### Grenades




### Mortar Bombs



Initiation of Unexploded Ordnance. Explosive Ordnance is highly unlikely to spontaneously explode. The energetic chemical compounds, (Explosives) used in weapon manufacture are chosen to be as stable as possible and they all require a significant application of additional energy to create the right conditions for detonation to

occur. If stored correctly, most explosive materials are designed to remain stable for the duration of their expected lifespan (typically 20 years). During this time, the correct functioning of the weapon is achieved by means of the 'Initiation Train' (See Figure 8).

**FIGURE 8:** Explosive Ordnance Initiation Train.



Initiation Train. This is a means by which, once the safety features have been switched off or removed, a chain reaction occurs through the weapon. Starting within the fusing system as a small ignition or spark, causing a detonator to explode, which in turn causes the booster charge to detonate with a greater energy and ending in the full detonation of the main explosive filling. Each part of the process has in-built safety features to prevent an unintended detonation. A failure in any of the components within the Initiation Train can result in a UXO. In the case of a UXB; the chain reaction has broken down and the Initiation Train is brought to a halt, albeit, a temporary one. There are a number of ways that sufficient energy could be introduced to the otherwise stable UXB / UXO that may allow the Initiation Train to set off once more, overcoming the initial reason for failure. In addition to subjecting the weapon to excessive heat, such as a fire, the most common methods to bring about an explosive detonation in such items are considered to be:

Direct impact onto the main body of the bomb by mechanical excavation or pile driving: Such an occurrence can cause the bomb to detonate, should the point of impact be on the bomb fuze; less force would be required to bring about a full or partial explosive detonation.

Re-starting the clock timer in the bomb fuze. Only a small percentage of bombs were fitted with clockwork fuzes. It is likely that corrosion has taken place within the fuze that may prevent the clockwork mechanism from functioning. However, the restarting of the clock is by no means a scenario that can be completely ruled out. This is considered to be one of the two most credible mechanisms by which sufficient energy could be introduced to the bomb and result in a detonation.

Induction of a static charge or exposure to an external power source (Electrical Services), causing a current in an electrical fuze. The majority of German bombs employed an electrical component within the fuzes, it is likely that corrosion would have taken place within the fuze mechanism and that it would no longer contain, or conduct sufficient electrical charge to initiate the bomb.

Friction initiating the sensitive fuze explosive. Some chemical constituents may have deteriorated, due to oxidisation. Components designed with a high degree of stability at the time of manufacture may no longer be as safe. This is considered to be the most likely mechanism by which sufficient energy could be introduced to the bomb and result in a detonation.

**Annex G** 



# Unexploded World War 2 bomb found on a Soho building site

LONDON | LONDON | SOHO | (§) Monday 3 February 2020, 3:33pm

Bomb disposal teams have removed an unexploded Second World War bomb from a busy area of central London.

Officers were called to a building site near Dean Street in Soho at 1.42pm after reports of the suspected explosive device.

Videos posted on Twitter showed people leaving buildings and gathering as police set up a cordon.

Witnesses described "lots of commotion" as the area surrounding the site was shut off. A Royal Engineers bomb disposal unit was called in and removed the half-tonne device. Shortly after 8.30pm, the Metropolitan Police's Soho team said the cordons in Oxford Street, Charing Cross Road, Shaftesbury Avenue, Lexington Street and Poland Street had been lifted.

A Ministry of Defence spokeswoman said: "An Army explosive ordnance disposal team has been called out to Soho to support the Metropolitan Police after discovery of a 500kg Second World War device.

"The Army EOD team have confirmed the bomb was safe to remove overnight to a location where it will be detonated," the spokesperson continued.

"Military personnel are regularly required to assist with the disposal of historic ordnance such as this, ensuring every situation is dealt with as quickly as possible for the safety of the general public."

https://www.itv.com/news/london/2020-02-03/suspected-world-war-2-bomb-discovered-at-building-site-in-soho



# Bomb disposal teams called to Luton after 'cannonball' found on a building site

### ANGLIA | BOMB | CANNONBALL | POLICE

(S) Friday 13 March 2020, 12:00pm



Bomb disposal teams and police cordoned off an area in Luton today (Friday 13) after what is thought to have been a cannonball was found on a building site. Hitchin Road was closed between Stopsley Way and Stockingstone Road.

Police were called at around 10.30am after someone reported seeing something suspicious on a nearby construction site.

Bedfordshire police say the explosive ordnance disposal team were called as a precaution. The roads have since reopened.

https://www.itv.com/news/anglia/2020-03-13/bomb-disposal-teams-called-to-luton-after-cannonball-found-on-a-building-site



## World War 2 bomb 'found yards away from West Ham's London Stadium' ahead of Arsenal clash

The Hammers' clash with Arsenal on December 9 could now be postponed although their match with Tottenham next Saturday will go ahead as planned



Police cordoned off an area after an object believed to be a bomb was found near the stadium (Image: PA)

A bomb that dates back to World War Two has reportedly been found just yards away from West Ham's London Stadium. Ongoing work on an apartment development nearby had to be halted after the bomb was discovered on Friday morning.

Police officers set up a 150 metre cordon around the site after they were called to the scene just before midday, reports the Sun .

The area has been declared safe by experts for the time being, with a specialist mining team set to attend the site on November 25.

West Ham's match with Arsenal scheduled for December 9 is now under threat of postponement if there is any change in the safety status of the site.

Due to the timeframe of the visit from specialists, the Hammers clash with Tottenham next Saturday November 23 is due to go ahead as planned.

"It's crazy to think of all the people walking around here during the Olympics and we had no idea it was here.

"The bomb is in a tricky position, so could take up to two weeks to sort it out, which takes us into the second week of December.

"We will continue our efforts to safely establish what the object is but the park and its venues will continue to remain open." "Between now and 25 November teams will be putting together a plan of what to do." However, despite suggestions that the object is a bomb, a spokesman for the London Legacy Development Corporation (LLDC) who handle Olympic Park, were keen to stress the item is as yet unidentified.

# Andover Advertiser

02<sup>nd</sup> March 2019



Schools and homes have been evacuated after a Second World War bomb was discovered on a building site.

Army bomb disposal experts are on the scene after the unexploded device was found in Brent, north-west London.

Work on the site is expected to continue until at least Friday afternoon, Brent Council said. A police cordon has been established at the scene and will be extended to around 300m on Friday morning, forcing more residents to leave their homes.

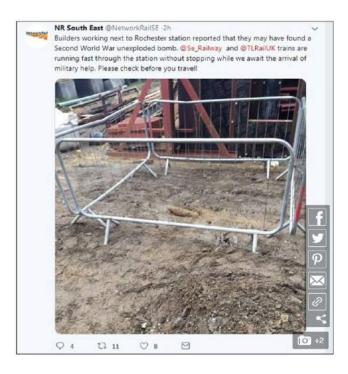
More than 50 people are currently staying at a rest centre set up at St Martin's Church on Mortimer Road, Kensal Green.

Several British Red Cross volunteers are on hand to provide support to affected residents. Scotland Yard said it was called to The Avenue, near Brondesbury Park, at around 11.30am on Thursday following the discovery.

Nearby schools, businesses and residents were evacuated, and roads closed.

### **Mail** Online

5th February 2019


Railway station is evacuated and trains ordered not to stop when builders find unexploded World War Two bomb;

- Rochester Station was closed for over two hours after the bomb was found
- The military and British Transport Police were called in to deal with the threat
- While they worked trains were allowed to run fast through the station
- Builders at a nearby construction site found the shell in the mud at around 1pm

A railway station was evacuated this afternoon after a WWII bomb was discovered by builders working in Rochester, Kent.

British Transport Police and military personnel descended on the train station following the construction workers finding the unexploded shell underground.

The station was evacuated at 1.25pm and trains could run fast through the station while they worked to remove the hazard.



By 3pm - and in time for rush hour - the bomb had been safely removed by the bomb squad and Rochester Station could resume normal service.

South Eastern Tweeted: 'Builders working next to Rochester station reported that they may have found a Second World War unexploded bomb.

'@Se\_Railway (Southeastern) and @TLRailUK (Thameslink) trains are running fast through the station without stopping while we await the arrival of military help. Please check before you travel!'

The WWII bomb was discovered on a building site off the station's land, but close enough that trains were unable to stop as a safety precaution.

Later on Network Rail updated passengers and wrote: 'The bomb has been removed and normal service has resumed. Thank you for your patience.'

Annex F

### **Risk Assessment Tables**

| Table 1: Summary of Potential Contamination Sources |            |                |  |  |  |
|-----------------------------------------------------|------------|----------------|--|--|--|
| Source                                              | Applicable | Not Applicable |  |  |  |
| Enemy Attack & Counter Measures                     |            |                |  |  |  |
| Bombing WW1                                         |            | X              |  |  |  |
| Manned Aircraft Bombing WW2 (potentially)           | ×          |                |  |  |  |
| Unmanned V1 & V2 Rocket Attack                      |            | X              |  |  |  |
| Shelling                                            |            | X              |  |  |  |
| Anti-Shipping Mines & Depth Charges                 |            | X              |  |  |  |
| Anti-Aircraft Shells & Rockets                      |            | X              |  |  |  |
| Beach Mines & Coastal Defences.                     |            | X              |  |  |  |
| Airfield/Key Point Defensive Mines/Charges          |            | X              |  |  |  |
| Abandoned Unexploded Bomb (A/UXB)                   |            | X              |  |  |  |
| Migration of UX                                     | 0          |                |  |  |  |
| UXO Migration in Rubble & Infill                    |            | X              |  |  |  |
| UXO Migration by Tide & River Current               |            | ×              |  |  |  |
| UXO Migration by Marine Dredging                    |            | ×              |  |  |  |
| Shipwrecks                                          |            | X              |  |  |  |
| Dispersal by Explosion, Fire & Accident             |            | X              |  |  |  |
| Aeroplane Crash                                     |            | X              |  |  |  |
| Private Collections                                 |            | X              |  |  |  |
| MOD Facilities                                      |            |                |  |  |  |
| Bombing Range                                       |            | X              |  |  |  |
| Artillery, Mortar & Tank Range                      |            | ×              |  |  |  |
| Grenade Range                                       |            | X              |  |  |  |
| Small Arms Firing Range                             |            | X              |  |  |  |
| Weapon Research & Development Facilities            |            | X              |  |  |  |
| Ammunition Burial Grounds                           |            | X              |  |  |  |
| Docks & Harbour Facilities                          |            | X              |  |  |  |
| Offshore Ammunition Dumping Grounds                 |            | X              |  |  |  |
| Ammunition Storage & Manufacture Sites              |            | X              |  |  |  |
| Airfields & Air Stations (close proximity)          | ×          |                |  |  |  |
| Bombing Decoy Site                                  |            | X              |  |  |  |
| Army Barracks & Camps                               |            | X              |  |  |  |
| MOD Training / Concentration Areas                  |            | X              |  |  |  |
| Home Guard & SOE Weapon Caches                      |            | ×              |  |  |  |

Table 2: Airdropped Weapon Strike Indicators (UK)

| Item                     | Increasing Potential level ⇒          |                          |                                    |                     |
|--------------------------|---------------------------------------|--------------------------|------------------------------------|---------------------|
| Site Location            | Rural                                 | Small Town               | Brown Field<br>Large Towns         | Cities              |
| Site Description and Use | Greenfield or<br>Agricultural<br>Land | Near Strategic<br>Target | Adjacent to<br>Strategic<br>Target | Strategic<br>Target |
| Site History             | No history of<br>Attack               | Near area of<br>Attack   | Immediate Area<br>Attacked         | Direct Attack       |

Strategic Target: Military Installation, Industrial or Munitions Manufacturer, Power Station, Gas or Water Works, Port, Dock, Railway Yard, Decoy Site.

Table 3: Weapon Strike Records (UK)

| Source    | Availability |              |          |           |
|-----------|--------------|--------------|----------|-----------|
| Archive   | None         | Non-specific | Specific | Extensive |
| In-house  | None         | Non-specific | Specific | Extensive |
| Anecdotal | None         | Non-specific | Specific | Confirmed |

Table 4: Anti-Aircraft Weapon Strike Indicators (UK)

| Item                      | Increasing Potential level ⇒ |              |        |               |
|---------------------------|------------------------------|--------------|--------|---------------|
| Site Location             | Rural                        | Town         | City   | Military Site |
| Fixed Battery<br>Location | None                         | General Area | Nearby | Onsite        |
| Mobile Battery            | Rural                        | Town         | City   | Military Site |

Military Site: Airfield, Port, Radar, Barracks, Depots, Arsenal or Similar.

Table 5: Abandoned Bomb Records (UK)

| Item     | Increasing Potential level ⇒ |     |         |
|----------|------------------------------|-----|---------|
| In-house | None                         | Yes | On-site |
| Other    | None                         | Yes | On-site |

Table 6: Bomb Strike Density Assessment

There were 3831 bombs of all types dropped over Oxfordshire, causing 20 deaths and 60 other casualties, as well as 65 head of cattle. Over 300 houses were damaged as well as other buildings and utilities.

**Table 7:** Opportunity to have detected Bomb or Shell Strikes (UK)

### Increasing Potential level ⇒

No bombs recorded

Good ARP cover

Significant development (carried out prior to WW2)

No significant ground cover

Bomb recorded within close proximity to Site boundary

Moderate ARP cover

Moderate development (across some areas of the site)

Frequent public access

Little ground cover

Bombs recorded within Site boundary

**Poor ARP cover** 

Minimal development limited to shallow excavations (within some areas of the site location)

Infrequent public access

Moderate ground cover

Heavy bomb damage/total destruction

No ARP cover

None too little development

Controlled private access

Heavy ground cover, vegetation, ploughing or body of water

Table 8: Post Contamination Development Indicators (UK)

| Nature of Post<br>Contamination<br>Development | Highlighted                                                       |
|------------------------------------------------|-------------------------------------------------------------------|
|                                                | 100% excavations of the entire site to below contamination depth. |
|                                                | Significant development (across some areas of the site, post WW2) |
|                                                | Moderate development (across some areas of the site)              |
|                                                | Minimal development (across some areas of the site)               |
|                                                | No development                                                    |

**Table 9:** Construction Activities Encounter Indicators

|            | Highlighted                                                 |  |
|------------|-------------------------------------------------------------|--|
|            | Borehole Drilling                                           |  |
|            | Dynamic Sampling                                            |  |
|            | Shallow Trial Pit (within made ground)                      |  |
|            | Services Trenching (within made ground)                     |  |
|            | Bored (CFA) Piling                                          |  |
| Activities | Sheet Piling                                                |  |
|            | Shallow Excavations over extended area (within made ground) |  |
|            | Deep Excavations over a limited area                        |  |
|            | High Density Piles                                          |  |
|            | Deep Excavations over extended area                         |  |
|            | Bulk Excavations                                            |  |

| Risk Category Key | Mitigation Requirement                                                 |  |
|-------------------|------------------------------------------------------------------------|--|
| Green             | No/Minimum Mitigation measures required (see document                  |  |
|                   | recommendations)                                                       |  |
| Amber             | Medium risk of encountering items of UXO (or items there off)          |  |
|                   | within the site boundary, mitigation required for safe systems of      |  |
|                   | work.                                                                  |  |
| Red               | High risk of finding items of UXO (or items there off) within the site |  |
|                   | boundary, mitigation required for safe systems of work.                |  |



### **SSSI Citations**

**COUNTY:** OXFORDSHIRE **SITE NAME:** ARDLEY CUTTING AND QUARRY

Status: Site of Special Scientific Interest (SSSI) notified under Section 28 of the Wildlife and Countryside Act

1981(as amended)

**Local Planning Authorities:** Cherwell District Council, Oxfordshire County Council

National Grid Reference: SP540269

**Ordnance Survey Sheet 1:50,000:** 164 **1:10,000:** SP52 NW, NE

Date Notified (Under 1949 Act): 1972 Date of Last Revision:

Date Notified (Under 1981 Act): 1988 Date of Last Revision: 28 July 1999

**Area:** 40.13 ha 99.12 ac

Other information: Part of the site is managed by the Berkshire, Buckinghamshire and Oxfordshire Wildlife Tru

### **Description and Reasons for Notification**

This site lies in the eastern part of the Oxfordshire Cotswolds along a section of the London to Birmingham railway line. It is of geological interest for its exposures of Jurassic rocks and has biological interest associated with limestone grassland, scrub, ancient woodland and wetland habitats. The soils are mostly shallow loams of the Aberford Series, interrupted in places by bands of ill-draining clays and outcrops of Northants sands giving rise to changes in the flora.

The railway cutting and southernmost quarry constitute one of southern England's key sites for Jurassic strata. It has exposures ranging from the lowest Bathonian Chipping Norton Formation to the White Limestone Formation thus exhibiting the entire local Bathonian development with the exception of the Forest Marble.

The Chipping Norton Formation is composed of oolitic limestones, sandy limestones, and mudstones. The formation is deeply excavated by sand-filled channels which themselves are topped by rootlet horizons and a lignite, indicating a period of emergence as low, marshy land. The overlying Sharps Hill Formation here consists of a thin oyster-bearing clay horizon and indicates the return of marine conditions.

The Taynton Formation, consisting of flaggy, oolitic limestones and a basal oyster bed was deposited in a relatively inshore site under turbulent conditions. The Hampden Marly Formation contains a rich fauna of oysters and brachiopods at a number of horizons. The cutting is the only site where an ammonite has been recovered from this formation and places it in the *Procerites progacilis* Zone, correlating it with the Acuminata Beds of the South Cotswolds and Somerset. The uppermost White Limestone Formation consists of approximately seven metres of micritic and peloidal limestones with subsidiary marls and clays. The site is the type locality for the Ardley Member of this formation. The abundant gastropods, bivalves and brachiopods preserved in these limestones enable correlations with the White Limestone Formation to the south in the Cotswolds, and with the Blisworth Limestone Formation in Lincolnshire and Northamptonshire.

This is a key site for its fossil marker horizons, palaeontology, sedimentary features such as channels and emergent surfaces, and its stratigraphy. The rocks of Ardley enable the Bathonian sections of the Midlands to be correlated with those of the Oxford area and Cotswolds and as such is of national importance for the understanding of the Jurassic Period in Britain.

The limestone grassland on the steep banks of the railway cutting and the adjacent quarry forms the main biological interest. It is one of the largest limestone grassland sites in the Oxfordshire Cotswolds where unimproved grassland is now very

The grassland is a characteristically tall sward either dominated by upright brome *Bromopsis erectus* or a mixture of brome and tor-grass *Brachypodium pinnatum*. The grassland contains a variety of species associated with limestone grassland including quaking grass *Briza media*, basil thyme *Acinos arvensis*, clustered bellflower *Campanula glomerata*, dropwort *Filipendula vulgaris* and sainfoin *Onobrychis viciifolia*. Other species which are locally common in the sward include horseshoe vetch *Hippocrepis comosa*, kidney vetch *Anthyllis vulneraria*, glaucous sedge *Carex flacca*, blue fleabane *Erigeron acer*, bee orchid *Ophrys apifera*, green-winged orchid *Orchis morio* and cowslip *Primula veris*, as well as a number of well-established introductions such as dragon's teeth *Tetragonolobus maritimus*, elecampane *Inula helenium* and broad-leaved everlasting pea *Lathyrus latifolius*.

The flora of the woodland includes lords and ladies *Arum maculatum*, wood anemone *Anemone nemorosa* and the uncommon green hellebore *Helleborus viridis*. The eastern edge of the quarry has a near vertical rock face with a seasonally dry pool at its base. This pool is contiguous with a low lying, marshy section containing willow carr and a flora dominated by soft rush *Juncus effusus*, reedmace *Typha latifolia*, reed canary grass *Phalaris arundinacea*, and water mint *Mentha aquatica*.

The invertebrate fauna is particularly rich along the railway cutting, with large populations of calcareous grassland butterflies like small blue *Cupido minimus*, brown argus *Aricia agestis*, dark green fritillary *Argynnis aglaja*, green hairstreak *Callophrys rubi* and Duke of Burgundy *Hamearis lucina*, all of which are uncommon in Oxfordshire. There is also a colony of the nationally rare four-spotted moth *Tyta luctuosa* whose larvae feed on field bindweed *Convolvulus arvensis*, as well as the nationally uncommon leaf beetles *Cryptocephalus hypochaeridis* and *C. moraei*.

The Cutting and adjacent quarry also support a notably wide range of vertebrates. These include part of a large population of the internationally protected great crested newt *Triturus cristatus* which spreads into several adjacent quarries.

Site Name: Ardley Trackways SSSI County: Oxfordshire

**District:** Cherwell

Status: Site of Special Scientific Interest (SSSI) notified under section 28 of the Wildlife

and Countryside Act 1981, as substituted by Schedule 9 to the Countryside and

Rights of Way Act 2000.

Local Planning Authority: Cherwell District Council

National Grid reference: SP540248 Area: 63.59 ha

**Ordnance Survey Sheet:** 1:50,000: 164 1:10,000: SP 52 NW, SP 52 SW

Notification date: 19 January 2010

#### Reasons for notification:

Ardley Trackways SSSI is a nationally important site containing a rock horizon close to the top of the Shipton Member of the White Limestone Formation which, in the immediate vicinity of the SSSI, has revealed the presence of an array of fossilised trackways. These trackways were formed by the passage of a herd of sauropod dinosaurs, and several theropod dinosaurs, along a shoreline in what is now north-eastern Oxfordshire, during the Middle Jurassic (approximately 165 million years ago). Such extensive and relatively complete assemblages of trackways are otherwise unknown in England and are rare in the Middle Jurassic worldwide. The rarity of these trackways and their geological and environmental context for future research, mean that Ardley Trackways SSSI can be regarded as being of international importance. Based on the orientation of the trackways studied to date, the SSSI has been identified as containing a finite buried reserve of the trackway bed, which is accessible for scientific study.

### General description:

Ardley Trackways SSSI consists of a series of working quarries lying either side of the railway line from Bicester to Banbury, to the south of the village of Ardley, about 4 km northwest of Bicester in Oxfordshire. The bedding-plane in which the trackways lie is near the top of the Shipton Member of the White Limestone Formation. The general trend of the trackways is on a bearing north-north-east to south-south-west, although a few trend north-east to south-west. The Shipton Member of the White Limestone Formation is of Bathonian age (Middle Jurassic – approximately 165 million years ago) and was deposited within a belt of near-shore lagoons on the north-western margin of the London Platform (a land mass extending over part of the area now consisting of south-eastern England, the southern North Sea and Belgium).

In locations where it has previously been exposed immediately adjacent to the SSSI, the bedding-plane surface has so far revealed the presence of over 40 more-or-less continuous trackways attributed to two-legged, carnivorous (theropod) dinosaurs and four-legged vegetarian (sauropod) dinosaurs. The trackways yield information relevant to our understanding of dinosaur locomotion, their burial and how they came to be preserved (taphonomy), the implications these trackways have for the classification (systematic taxonomy) of the footprints, the evolutionary relationships of the dinosaurs thought to be represented by the trackways, the taxonomic composition of this particular ecosystem, and insights into the behaviour (ethology) of these animals.

Evidence of a change in the stride (gait transition) associated with a temporary increase in speed on a theropod trackway has important implications for understanding the mechanics of the limb movement and the evolution of the oldest theropods. The interpretation of many of the sauropod tracks as having been formed by members of the Titanosauria (a large group of sauropods characterised by their wide-gauge limb posture), pushes the origins of this group back into the Middle Jurassic. This provides evidence to counter theories that titanosaurs originated in Gondwana (the continent consisting of Africa, Antarctica, Australia and South America) after the break-up of Pangea (the supercontinent consisting of Gondwana combined with Eurasia and North America) during the late Middle Jurassic. The similar directions of the trackways, combined with the relatively limited time period over which the tracks could have been formed, may suggest that the sauropods were moving in a mixed herd. It has also been speculated that the theropods were following the sauropod herds and that additional evidence from the site might provide insights into pack behaviour in large theropod dinosaurs.



### Appendix E

Preliminary Geotechnical Risk Register



### Geotechnical Hazard Identification - Desk Study Stage

Potential geotechnical hazards have been assessed in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The following pages set out the identified geotechnical risks and hazards which are associated with the proposed development and establish the approach which is to be taken to manage the risks including the geotechnical input and analysis.

Table E.1 is a preliminary assessment of possible geotechnical hazards at the site at Desk Study stage. This information is used to assist with site investigation design.

Table E.1: Possible geotechnical hazards

| Hazard                                                                               | Comment                                                                                                                                                                                                                                                                                                                                                                            | Hazard status ba                                       | sed on desk study                         |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    | Could be present and / or affect site (i.e. Plausible) | Unlikely to be present and/or affect site |
| Uncontrolled Made Ground<br>(variable strength and                                   | Will be present, as Made Ground has been proven in historical investigation.  Likely to be limited in extent and depth, but recorded/noted in Field 3, Field 5, Ashgrove Farm and isolated areas around the site.                                                                                                                                                                  | <b>√</b>                                               |                                           |
| compressibility).                                                                    | Historical landfill in the north-west of the site, to the east of the B430. The proposed rail line connection from the rail terminal to the mainline passes across / through the former Ardley Quarry / Ardley Landfill.                                                                                                                                                           |                                                        |                                           |
| Soft / loose compressible ground (low strength and high settlement potential).       | In areas of superficial deposits (e.g. Alluvium) and rock joint / weathering profiles.                                                                                                                                                                                                                                                                                             | ✓                                                      |                                           |
| Shrinkage/ swelling of the clay fraction of soils under the influence of vegetation. | Clay in areas of superficial deposits and weathered rock.  Likely to be limited in extent and depth.                                                                                                                                                                                                                                                                               | ✓                                                      |                                           |
| Variable lateral and vertical changes in ground conditions.                          | Variations between rock and superficial soils (Alluvium and Head Deposits).  Variations in rock material strength, with varied lithological units (limestone, marl, mudrock and siltstone) within the geological units.  Variations in rock mass characteristics (fracture spacing, aperture, infilling etc).  Variations in the weathering profile of limestone or other bedrock. | <b>√</b>                                               |                                           |
| High sulphates present in the soils.                                                 | The soils are not expected to have high sulphate concentrations. However, testing is required to prove this.                                                                                                                                                                                                                                                                       |                                                        | <b>√</b>                                  |
| Adverse chemical ground conditions, (e.g. expansive slag).                           | There is no evidence of such materials from historical investigation.                                                                                                                                                                                                                                                                                                              |                                                        | <b>√</b>                                  |
| Obstructions.                                                                        | Including existing foundations at Ashgrove Farm, historical structures on the site and the drainage structure present in the north.                                                                                                                                                                                                                                                | <b>√</b>                                               |                                           |



| Hazard                                                                                                               | Comment                                                                                                                                                                                                                                                                                                                                                                                                                         | Hazard status based on desk study                      |                                           |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Could be present and / or affect site (i.e. Plausible) | Unlikely to be present and/or affect site |
| Difficult excavation.                                                                                                | Rock of differing strengths and fracturing will be encountered.  The limestone rock is anticipated to be difficult to excavate and will require heavy duty plant / rippers, and may require wide spaced blasting.                                                                                                                                                                                                               | <b>√</b>                                               |                                           |
| Existing below ground structures to remain                                                                           | Some existing buildings to be retained and potential vibration damage associated with excavation in close proximity. Some of the farm buildings are Grade 2 listed.  The covered reservoir in the south-east of the site is to be retained. Review of the preliminary cut to fill indicates limited cut in this section of the site. Impact of construction will need to be accounted for in the design and in temporary works. | ✓                                                      |                                           |
| Shallow groundwater.                                                                                                 | Potential for shallow groundwater at existing spring lines and close to the level of the existing streams.                                                                                                                                                                                                                                                                                                                      | g 🗸                                                    |                                           |
|                                                                                                                      | Potential impact on proposed surface water attenuation features.                                                                                                                                                                                                                                                                                                                                                                | <b>√</b>                                               |                                           |
| Changing groundwater conditions.                                                                                     | Impact of groundwater in cuttings and excavations. Multiple groundwater bodies are expected, with the cut surface likely to intercept springs, leading to wet or flooded conditions.                                                                                                                                                                                                                                            | <b>√</b>                                               |                                           |
| Running sands and / or loose<br>Made Ground, leading to<br>difficulty with excavation and<br>collapse of side walls. | Generally low risk across the majority of the site. However, likely to be a significant risk in the alluvial soils in the base of the valley and the landfill Made Ground in the north-east of the site (to the east of the B430).                                                                                                                                                                                              | <b>√</b>                                               |                                           |
| Risk from flooding.                                                                                                  | Risk from erosion due to surface water and groundwater flooding.                                                                                                                                                                                                                                                                                                                                                                | <b>√</b>                                               |                                           |
|                                                                                                                      | Changes in surface water run-off to neighbouring land.                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                           |
| Earthworks – suitability of site won material to be reused as fill.                                                  | Selective excavation of soils will be required. Differing engineering classifications likely to be assigned to the: Made Ground, Topsoil, Alluvium, Head, significantly (near surface) weathered limestone, partially weathered limestone, unweathered limestone and mudrock/ siltstone.                                                                                                                                        | <b>√</b>                                               |                                           |
| Earthworks – suitability of site<br>won material to be reused as<br>fill.                                            | Significant processing of excavated limestone is likely to be required to allow reuse as an engineered fill. The limestone is currently processed to a 6F5 / 6F2 class from Dewars Farm Quarry adjacent to the site.                                                                                                                                                                                                            | <b>✓</b>                                               |                                           |



| Hazard                                                                                                          | Comment                                                                                                                                                                                                                                                                                                                                  | Hazard status ba                                       | ased on desk study                        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          | Could be present and / or affect site (i.e. Plausible) | Unlikely to be present and/or affect site |
| Earthworks - differential bearing capacity and settlement                                                       | <ul> <li>Will vary according to:</li> <li>The underlying ground conditions (rock or clay soils (Alluvium and Head Deposits)).</li> <li>Varying rock units (limestone, marl, mudrock and siltstone).</li> <li>The thickness and type of fill.</li> <li>Transition from cut rock to fill.</li> </ul>                                       | <b>√</b>                                               |                                           |
| Slope stability issues – general                                                                                | There are no significantly steep existing slopes on the majority of the site. No evidence of slope instability during the walkover.                                                                                                                                                                                                      |                                                        | <b>√</b>                                  |
| existing slopes.                                                                                                | Steep slopes are present to the north in the railway cutting. These appear poorly maintained.                                                                                                                                                                                                                                            | <b>√</b>                                               |                                           |
| Slope stability issues - instability of cut and fill slopes and excavations.                                    | Significant, steep, cut slopes are proposed, especially in the north. Slope stability will depend on: geology (rock or clay), rock mass quality, dip of the strata, fracturing, presence of unsupported boulders and blocks of rock and groundwater conditions. Fill slopes are also prosed for development plateaux and landscape bunds | ✓                                                      |                                           |
| Slope stability issues – retaining walls.                                                                       | Significant sub-vertical cut is required in the north-west, associated with the intermodal terminal. Significant retaining walls will be required to support interbedded limestone and mudrock of the White Limestone Group and the Rutland Formation.                                                                                   | <b>√</b>                                               |                                           |
| Effect of earthworks and construction on assets outside the site boundaries such as the railway cutting slopes. | The railway line is close to the northern site boundary. Consideration of earthworks and impacts on the railway will need to be considered.                                                                                                                                                                                              | <b>√</b>                                               |                                           |
| Earthworks – poor bearing capacity of new fill.                                                                 | Unlikely to be a significant issue. However,<br>Topsoil will only be suitable for Class 4 fill (non-<br>structural) and Alluvium and Head Deposits may<br>need improvement to increase bearing capacity.                                                                                                                                 | <b>√</b>                                               |                                           |
| Faults                                                                                                          | Faults are present in the north of the site and will need to be reviewed in detail as investigation progresses. These are not likely to be tectonically active.                                                                                                                                                                          | <b>√</b>                                               |                                           |
| Solution features in limestone.                                                                                 | Noted as low risk in the Groundsure database report and no evidence of cavities in the wider area.                                                                                                                                                                                                                                       |                                                        | <b>√</b>                                  |
| Cavities in the Superficial Deposits due to solution features.                                                  | As above                                                                                                                                                                                                                                                                                                                                 |                                                        | <b>√</b>                                  |



| Hazard                                         | Comment                                                                                                                                                                                                                              | Hazard status ba                                       | ased on desk study                        |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
|                                                |                                                                                                                                                                                                                                      | Could be present and / or affect site (i.e. Plausible) | Unlikely to be present and/or affect site |
| Dissolution (associated with 'wet rock head'). | The site is not in area affected by these hazards.                                                                                                                                                                                   |                                                        | <b>√</b>                                  |
| Brine extraction.                              |                                                                                                                                                                                                                                      |                                                        | ✓                                         |
| Mining.                                        | Low risk from underground mining. Historical surface mining recorded to the east and north. No known mining on the site. Minerals are assessed in the separate Minerals Resource Assessment Report.                                  |                                                        | <b>√</b>                                  |
| Cambered ground with gulls possibly present.   | No periglacial slopes nearby and the depth to                                                                                                                                                                                        |                                                        | <b>√</b>                                  |
| Relic slip surfaces.                           | clay strata is likely to be relatively deep.                                                                                                                                                                                         |                                                        | ✓                                         |
| Solifluction.                                  |                                                                                                                                                                                                                                      |                                                        | ✓                                         |
|                                                | The Ardley Cutting and Quarry SSSI is on the northern site boundary, and the proposed connections from the rail terminal to the mainline will pass through it.                                                                       | <b>√</b>                                               |                                           |
| Impacts to SSSIs.                              | The Ardley Trackways SSSI is off-site to the north-west, south, and south-east. Whilst specific impacts to the SSSI are likely to be low, the top of the Shipton Member will be exposed in the cut surfaces in the west of the site. | <b>√</b>                                               |                                           |
| Problematic soils (silts and rewetting etc.).  | Likely only to be a potential issue with soils won from the Alluvium, the Head Deposits and heavily weathered limestone (top 1.0m).                                                                                                  | <b>√</b>                                               |                                           |



Appendix F

Plausible Source-Pathway-Receptor Contaminant Linkages



### **Summary of Potential Contaminant Linkages**

Table F.2 lists the plausible contaminant linkages which have been identified. These are considered as potentially unacceptable risks in line with guidelines published in CLR 11 and additional risk assessment is required.

Source – Pathway – Receptor Linkages have been assessed in general accordance with guidance in CIRIA Report C552 (Rudland et al 2001) but with the addition of a 'no linkage' category (See Table F.1).

It should be noted that whilst the risk assessment process undertaken in this report may identify potential risks to site demolition and redevelopment workers, consideration of occupational health and safety issues is beyond the scope of this report and need to be considered separately in the Construction Phase Health and Safety Plan.

Table F.1: Consequence versus probability assessment.

|             |                 | Consequence    |               |               |               |
|-------------|-----------------|----------------|---------------|---------------|---------------|
|             |                 | Severe         | Medium        | Mild          | Minor         |
|             | High Likelihood | Very high risk | High risk     | Moderate risk | Low risk      |
| Probability | Likely          | High risk      | Moderate risk | Low risk      | Very low risk |
| roba        | Low Likelihood  | Moderate risk  | Low risk      | Low risk      | Very low risk |
| ш.          | Unlikely        | Low risk       | Very low risk | Very low risk | Very low risk |
|             | No Linkage      |                | Nor           | isk           |               |




Table F.2: Exposure model – preliminary risk assessment of source-pathway-receptor contaminant linkages

| Sources                                                                                                                                      | Possible<br>Pathways                           | Receptors                                                   | Probability    | Consequence | Risk Level | Comments                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|----------------|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              | Ingestion,<br>inhalation or<br>direct contact. | Site users.                                                 | Likely         | Medium      | Moderate   | Made Ground is only likely in the limited areas of historical development (Ashgrove Farm, Ashgrove Cottages, Scotland Barn, the water tower, the                                                                                                                                                                                | Mitigation measures may be required to break the S-P-R linkage.  Mitigation would generally comprise materials management and reuse of Made Ground soils at depth in landscaped areas.  Made Ground is unlikely to be suitable for use as fill in the construction platforms, but will be suitable for landscape bunds.                                                                                                                                   |                                                                                                                                                                                                                                                                         |
|                                                                                                                                              | Inhalation of fugitive dust.                   | Neighbours.                                                 | Low likelihood | Medium      | Low        | caravan park and isolated historical construction                                                                                                                                                                                                                                                                               | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |
| Made Ground<br>associated with<br>isolated areas of<br>historical<br>development and<br>field spreading.<br>(metals, metalloids<br>and PAH). | Leaching<br>through<br>unsaturated<br>zone.    | Groundwater.                                                | Low likelihood | Medium      | Low        | (drainage features and made-up tracks).  Also associated with Field 3 and Field 5, where manmade items are prolific and have been spread.  The source of Made Ground is unknown and may contain metals, metalloids and PAH.  Contact with these materials is likely in limited areas of landscaping, especially at the proposed | made-up tracks).  Also associated with Field 3 and Field 5, where man- made items are prolific  The site is underlain by high permeability strata a waterbodies below the site are a Principal Aquife there are no active groundwater abstractions with site and any impact from the small areas of isolate Ground will be limited.                                                                                                                       | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site and any impact from the small areas of isolated Made Ground will be limited. |
|                                                                                                                                              | Surface run-off.                               | Aquatic ecosystems. Surface water and possible abstractors. | Low likelihood | Medium      | Low        |                                                                                                                                                                                                                                                                                                                                 | The topography of the site would cause surface water to run into on-site drainage ditches and off site. Mitigation would generally comprise materials management and reuse of Made Ground soils at depth, or in landscaped bunds on the edge of the site (a significant distance from the watercourses). There are no active groundwater abstractions within 1km of the site and any impact from the small areas of isolated Made Ground will be limited. |                                                                                                                                                                                                                                                                         |
|                                                                                                                                              | Base flow from contaminated groundwater.       |                                                             | Low likelihood | Medium      | Low        | conversion of Ashgrove<br>Farm. However, over the<br>majority of the site, the<br>risk will be low as the                                                                                                                                                                                                                       | The site is underlain by high permeability strata. Groundwater flow is anticipated to be to the south-east, but also locally to the stream in the centre of the site. Any impact from the small areas of isolated Made Ground will be limited.                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |
|                                                                                                                                              | Direct contact                                 | Water supply pipes.                                         | Likely         | Medium      | Moderate   | proposed development will comprise hardstanding and building footprints.                                                                                                                                                                                                                                                        | It is possible that the Made Ground will contain contaminants of concern at levels in excess of the GAC. Direct contact with buried water supply pipes is therefore possible. However, it will be limited to small areas of the site.                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |



| Sources                                                                                                                                 | Possible<br>Pathways           | Receptors             | Probability | Consequence | Risk Level | Comments                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-------------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Made Ground associated with isolated areas of historical development and also associated with field spreading. (metals and metalloids). | Root uptake.                   | Landscape<br>planting | Likely      | Minor       | Low        | Ashgrove Cottages, Scotland construction (drainage featu and Field 5, where man-mad The source of Made Ground                                                                                                                                                      | the limited areas of historical development (Ashgrove Farm, Barn, the water tower, the caravan park and isolated historical res and made-up tracks). Although is also associated with Field 3 e items are prolific and have been spread. is unknown and may contain metals and metalloids. e in areas of landscaping, the plants currently on site did not ues.                                                                                           |
| Made Ground<br>associated with<br>isolated areas of                                                                                     | Made Ground<br>associated with | Site users.           | Likely      | Severe      | Very High  | Made Ground is only likely in the limited areas of historical development (Ashgrove Farm, Ashgrove Cottages, Scotland Barn, the water tower, the caravan park and isolated historical construction                                                                 | Contact with these materials is likely in limited areas of landscaping. However, over the majority of the site, the risk will be low as the proposed development will comprise hardstanding and building footprint.  Mitigation measures may be required to break the S-P-R linkage. Mitigation would generally comprise hand picking and possibly disposal, along with materials management and reuse of Made Ground soils at depth in landscaped areas. |
| historical<br>development and<br>also associated<br>with field<br>spreading.<br>(asbestos).                                             | Inhalation of fugitive dust.   | Neighbours.           | Unlikely    | Severe      | Low        | historical construction (drainage features and made-up tracks). Although is also associated with Field 3 and Field 5, where man-made items are prolific and have been spread. The source of the Made Ground is unknown and ACM and asbestos fibres may be present. | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.  Distances to the boundaries from potential Made Ground sources means it is unlikely to result in significant Made Ground derived dust at the site boundaries.                                                                                                                                                                 |

Cont.....



| Sources                                                                                  | Possible<br>Pathways                           | Receptors                                     | Probability     | Consequence | Risk Level | Comments                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | Ingestion,<br>inhalation or<br>direct contact. | Site users.                                   | High Likelihood | Medium      | High       |                                                                                                                                                                                                                                         | Users of this part of the site are likely to be limited to rail workers, and therefore unlikely to come into contact with the soils. No landscaping likely for this part of the site (railway siding).  Mitigation measures may be required to break the S-P-R linkage. Mitigation would generally comprise materials management and reuse of Made Ground soils at depth in landscaped areas and may require disposal, or the placement of a cover system. |
| Ground materials present in the in                                                       | Inhalation of fugitive dust.                   | Neighbours.                                   | Low likelihood  | Medium      | Low        | Landfill is present in the                                                                                                                                                                                                              | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.                                                                                                                                                                                                                                                                                                                                 |
| the historical landfill in the north-east of the site, to the east of the B430. (metals, | Leaching<br>through<br>unsaturated<br>zone.    | Groundwater.                                  | Low likelihood  | Medium      | Low        | north-west of the site. The source of Made Ground is landfill and may contain (metals, metalloids, PAHs and petroleum hydrocarbons, phenols, VOCs and SVOCs. This section of the site is proposed as a rail link to the main rail line. | There is a potentially significant source at the site, the site is underlain by high permeability strata and the waterbodies below the site are Principal Aquifers. However, the site forms part of the existing Ardley Landfill and the existing leachate collection systems will limit the risk that leachate from this small section of a larger landfill would have.                                                                                   |
| metalloids, PAHs<br>and petroleum<br>hydrocarbons,<br>phenols, VOCs,                     | Surface run-off.                               | Aquatic ecosystems.                           | Likely          | Medium      | Low        |                                                                                                                                                                                                                                         | The topography of the site may cause surface water to run into off-site drainage ditches. Mitigation may be needed to limit contact between the landfill materials and surface water via the use of impermeable barriers.                                                                                                                                                                                                                                  |
| SVOCs).                                                                                  | Base flow from contaminated groundwater.       | Surface water<br>and possible<br>abstractors. | Low likelihood  | Medium      | Low        |                                                                                                                                                                                                                                         | There is a potentially significant source at the site, the site is underlain by high permeability strata and the waterbodies below the site are Principal Aquifers. However, the site forms part of the existing Ardley Landfill and the existing leachate collection systems will limit the risk that leachate from this small section of a larger landfill would have.                                                                                   |
|                                                                                          | Direct contact                                 | Water supply pipes.                           | Low likelihood  | Medium      | Low        |                                                                                                                                                                                                                                         | It is possible that the Made Ground will contain contaminants of concern at levels in excess of the GAC. Direct contact with buried water supply pipes is therefore possible. However, it will be limited to small areas of the site.                                                                                                                                                                                                                      |



| Sources                                                                                                 | Possible<br>Pathways                           | Receptors                             | Probability | Consequence | Risk Level | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Landfill Made Ground materials present in the in the historical landfill in the north-east of the       | Inhalation of                                  | Site users.                           | Likely      | Severe      | Very High  | There is likely to be Made Ground in localised areas of the site, and ACM and asbestos fibmay be present.  Users of this part of the site are likely to be rail workers, and therefore unlikely to come in contact with the soils. No landscaping is likely for this part of the site (railway siding).  Mitigation measures may be required to break the S-P-R linkage. Mitigation would gener comprise materials management and reuse of Made Ground soils at depth in landscaped areas and may require disposal or the placement of a cover system. |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| site, to the east of<br>the B430.<br>(asbestos fibres<br>and Asbestos<br>Containing<br>Materials (ACM). | fugitive dust.                                 | Neighbours.                           | Likely      | Severe      | Very High  | The risk of significant generation of dust is high during site development process but can controlled.  This part of the site is proposed as a railway sidings and risk of dust generation is high and cannot be controlled during operation. Mitigation measures may be required to break the P-R linkage. Mitigation would generally comprise materials management and reuse of Mc Ground soils at depth in landscaped areas and may require disposal or the placement of a cover system.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Petroleum<br>hydrocarbons and                                                                           | Ingestion,<br>inhalation or<br>direct contact. | Site users.                           | Likely      | Medium      | Moderate   | Spills and leaks from vehicles and tanks on site are likely. However, the extent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact with these materials is likely only in limited areas. However, over the majority of the site, the risk will be low as the proposed development will comprise hardstanding and building footprints.  Mitigation measures may be required to break the S-P-R linkage. Mitigation may comprise small scale excavation, reuse of Made Ground / impacted soils at depth in landscaped areas and possibly small scale bio-remediation or disposal. |  |
| VOCs associated with spills and                                                                         | Vapours.                                       | Neighbours.                           |             | Medium      | Low        | contamination will be very limited (relative to the size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No significant vapours detected in historical investigations.                                                                                                                                                                                                                                                                                                                                                                                        |  |
| leaks from tanks at Ashgrove Farm.                                                                      | Inhalation of fugitive dust.                   | Neighbours.                           | Low         | Medium      | Low        | of the site). Testing required to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                         | Leaching<br>through<br>unsaturated<br>zone.    | Groundwater and possible abstractors. | Low         | Medium      | Low        | confirm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site and any impact from the small areas of isolated Made Ground will be limited.  Historical investigations did not identify a significant risk.                                                                                                              |  |



| Sources                                                                                    | Possible<br>Pathways                       | Receptors                                                   | Probability     | Consequence | Risk Level | Comments                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-----------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Petroleum                                                                                  | Surface run-off.                           | Aquatic ecosystems. Surface water and possible abstractors. | Low likelihood  | Medium      | Low        | Spills and leaks from vehicles and tanks on site are likely. However, the extent of contamination will be very limited (relative to the size of the site). Testing required to confirm. | The topography of the site would cause surface water to run into on-site drainage ditches and potentially off site.  Mitigation would generally comprise materials management and reuse of Made Ground soils at depth in landscaped areas.  However, no significant impact identified in previous investigations.                                                                                                                                |
| hydrocarbons and VOCs associated with spills and leaks from tanks at Ashgrove Farm. (Cont) | Base flow from contaminated groundwater.   |                                                             | LOW IIKEIII1000 | iviedium    |            |                                                                                                                                                                                         | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site and any impact from the small areas of isolated Made Ground will be limited.  Historical investigations did not identify a significant risk.                                                                                                          |
|                                                                                            | Direct contact                             | Water supply pipes.                                         | Likely          | Medium      | Moderate   |                                                                                                                                                                                         | It is possible that the Made Ground will contain contaminants of concern at levels in excess of the GAC. Direct contact with buried water supply pipes is therefore possible. However, it will be limited to small areas of the site.                                                                                                                                                                                                            |
| PCBs and oils from<br>transformers in the                                                  | Ingestion,<br>dermal contact               | Site users                                                  | Unlikely        | Medium      | Very Low   | An electrical substation has been present on the site, which has the potential to                                                                                                       | Contact with these materials is likely in limited areas.  However, over the majority of the site, the risk will be low as the proposed development will comprise hardstanding and building footprints.  Mitigation measures may be required to break the S-P-R linkage. Mitigation may comprise small scale excavation, reuse of Made Ground / impacted soils at depth in landscaped areas and possibly small scale bio-remediation or disposal. |
| electricity sub-<br>station on site                                                        | Inhalation and ingestion of dust.          | Site users<br>Neighbours                                    | Unlikely        | Medium      | Very Low   | have leaked. Testing required to confirm.                                                                                                                                               | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.                                                                                                                                                                                                                                                                                                                       |
|                                                                                            | Leaching<br>through<br>unsaturated<br>zone | Groundwater                                                 | Unlikely        | Medium      | Very Low   |                                                                                                                                                                                         | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site and any impact from the small areas of isolated Made Ground will be limited.                                                                                                                                                                          |



| Sources                                                                                                            | Possible<br>Pathways                  | Receptors                    | Probability | Consequence         | Risk Level          | Comments                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground gases<br>(carbon dioxide<br>and methane)<br>from organic                                                    | Migration, build up and               | Site users.                  | Unlikely    | Medium to<br>Severe | Low to<br>Moderate  | Ground gas concentrations from Made Ground and Alluvium are unlikely to be significantly elevated.                                                           |
| materials in the<br>Made Ground<br>below the site.                                                                 | asphyxiation.                         | Neighbours.                  |             | No Linkage          |                     | There are no neighbours within influencing distance of the proposed development.                                                                             |
| Ground gases                                                                                                       |                                       | Site users.                  | Unlikely    | Medium to<br>Severe | Low to<br>Moderate  | Ground gas concentrations from Made Ground and Alluvium are unlikely to be significantly elevated.                                                           |
| (methane) from                                                                                                     | Migration, build                      | Neighbours.                  |             | No Linkage          |                     | There are no neighbours within influencing distance of the proposed development.                                                                             |
| organic materials in the Made                                                                                      | up and explosion.                     | Buildings on site.           | Unlikely    | Medium to<br>Severe | Low to<br>Moderate  | Ground gas concentrations from Made Ground and Alluvium are unlikely to be significantly elevated.                                                           |
| Ground.                                                                                                            |                                       | Buildings on adjacent sites. | No Linkage  |                     |                     | The closest building to the Made Ground and Alluvial materials are built on an historical landfill and the site is not considered a risk to these properties |
| Ground gases<br>(carbon dioxide<br>and methane)<br>from the Ardley<br>landfill located to<br>the east of the site. | Migration, build up and asphyxiation. | Site users.                  | Likely      | Medium to<br>Severe | Moderate to<br>High | Ground gas concentrations from the off-site landfill have been reported as significantly elevated, although gas flow was not recorded.                       |
| Ground gases<br>(methane) from<br>organic materials                                                                | thane) from                           | Site users.                  | Likely      | Medium to<br>Severe | Moderate to<br>High | Rocks on site are permeable and will transmit ground gas.  Ground gas protection measures may be required.                                                   |
| from the Ardley landfill located to the east of the site.                                                          | up and explosion.                     | Buildings on site.           | Likely      | Medium to<br>Severe | Moderate to<br>High |                                                                                                                                                              |

...contd.



| Sources                                                  | Possible<br>Pathways          | Receptors                               | Probability                 | Consequence | Risk Level         | Comments                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |
|----------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | Ingestion, or direct contact. | Site users.                             | Low likelihood<br>to Likely | Medium      | Low to<br>Moderate |                                                                                                                                                                                                                                                                                                                                                                              | If present petroleum hydrocarbons and phenol may be present in groundwater exposed in cut rock faces.                                                                                                |
| Petroleum<br>hydrocarbons and<br>phenols<br>contaminated | Surface run-off.              | Aquatic ecosystems.                     | Low likelihood<br>to Likely | Medium      | Low to<br>Moderate | Petroleum hydrocarbons and phenol have been historically recorded in groundwater on the immediate western edge of the site. Although the risks were classified as low in historical reports and the risks were reviewed and the proposed remedial measures approved by the Environment Agency.  There is the potential for petroleum hydrocarbons and phenols to be present. | If present in groundwater petroleum hydrocarbons and phenol may emerge in spring lines (natural or made by cut surfaces) and migrate as surface water to the stream in the central-east of the site. |
| groundwater from<br>the former RAF<br>Upper Heyford      |                               | Surface water and possible abstractors. | Unlikely                    | Medium      | Very Low           |                                                                                                                                                                                                                                                                                                                                                                              | No surface water abstractions in close proximity to the site.                                                                                                                                        |
| from its use as an airbase and leaks from POL storage.   | Base flow from contaminated   | Aquatic ecosystems.                     | Low likelihood<br>to Likely | Medium      | Low to<br>Moderate |                                                                                                                                                                                                                                                                                                                                                                              | If present in groundwater petroleum hydrocarbons and phenol may contaminate a wide area, as the groundwater below the airfield is in continuity with the wider aquifer.                              |
|                                                          | groundwater.                  | Surface water and possible abstractors. | Unlikely                    | Medium      | Very Low           |                                                                                                                                                                                                                                                                                                                                                                              | No surface water abstractions in close proximity to the site.                                                                                                                                        |

Cont....



| Sources                                                                   | Possible<br>Pathways          | Receptors                               | Probability                 | Consequence        | Risk Level                                                          | Comments                                                                                                                                                                                                                             |                                                                                                                                                                                |
|---------------------------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------|--------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | Ingestion, or direct contact. | Site lisers                             |                             |                    | If present in groundwater PFAS / PFOS may emerge in cut rock faces. |                                                                                                                                                                                                                                      |                                                                                                                                                                                |
| PFOS / PFAS contaminated                                                  | Surface run-off.              | Aquatic ecosystems.                     | Low likelihood<br>to likely | Medium to sever    | Low to Very<br>High                                                 | PFOS / PFAS may be present in groundwater from the former RAF Upper Heyford. The site is located at the edge of the former                                                                                                           | If present in groundwater PFAS / PFOS may emerge in spring lines (natural or made by cut surfaces) and migrate as surface water to the stream in the central east of the site. |
| groundwater from<br>the former RAF<br>Upper Heyford<br>from its use as an |                               | Surface water and possible abstractors. | Unlikely                    | Medium to sever    | Very Low to Low Low To Hydrock's knowledge, no testing has been     | There are no surface water abstractions in close proximity to the site.                                                                                                                                                              |                                                                                                                                                                                |
| airbase and the potential use of firefighting foam.                       | Base flow from contaminated   | Aquatic ecosystems.                     | Low likelihood<br>to likely | Medium to<br>sever | Low to Very<br>High                                                 | historically undertaken.  There is the potential for PFOS / PFAS to be present.                                                                                                                                                      | If present in groundwater PFAS / PFOS may contaminate a wide area, as the groundwater below the airfield is in continuity with the wide aquifer.                               |
|                                                                           | groundwater.                  | Surface water and possible abstractors. | Unlikely                    | Medium to sever    | Very Low to<br>Low                                                  |                                                                                                                                                                                                                                      | There are no surface water abstractions in close proximity to the site.                                                                                                        |
| Asbestos fibres from insulation or asbestos-                              | Fugitive dust.                | On Site                                 | Likely                      | Severe             | High                                                                | Asbestos may be present in existing buildings and in Made Ground.  Careful removal from buildings will be required during demolition. However, remov controlled conditions should limit release of fibres to the air and the ground. |                                                                                                                                                                                |
| containing materials in the buildings.                                    |                               | Neighbours.                             | Unlikely                    | Severe             | Low                                                                 | The risk of significant generation of dust is likely only during site development process can therefore be controlled.                                                                                                               |                                                                                                                                                                                |

Contd.....



| Sources                                          | Possible<br>Pathways                                 | Receptors                               | Probability | Consequence | Risk Level | Comments                                                                               |                                                                                                                                                                                                                     |
|--------------------------------------------------|------------------------------------------------------|-----------------------------------------|-------------|-------------|------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | Ingestion, inhalation or Site users. direct contact. |                                         | Unlikely    | Medium      | Low        |                                                                                        | Contact with these materials is likely in limited areas of landscaping. However, over the majority of the site, the risk will be low as the proposed development will comprise hardstanding and building footprint. |
|                                                  | Inhalation of fugitive dust.                         | Neighbours.                             | Unlikely    | Medium      | Low        | It is very likely pesticides and herbicides have been                                  | The risk of significant generation of dust is likely only during site development process and can therefore be controlled.                                                                                          |
| Agricultural chemicals (pesticides / herbicides) | als through and p des / unsaturated abstra           | Groundwater and possible abstractors.   | Unlikely    | Medium      | Low        | used on the site in the past. However, persistent chemicals are likely to be unlikely. | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site.                         |
|                                                  | Surface run-off.                                     | Aquatic ecosystems.                     | Unlikely    | Medium      | Low        | Testing required to confirm.                                                           | The topography of the site would cause surface water to run into on-site drainage ditches.                                                                                                                          |
|                                                  | Base flow from contaminated groundwater.             | Surface water and possible abstractors. | Unlikely    | Medium      | Low        |                                                                                        | The site is underlain by high permeability strata and the waterbodies below the site are a Principal Aquifer. However, there are no active groundwater abstractions within 1km of the site.                         |
| Radon                                            | Inhalation.                                          | Site users.                             |             | No Linkage  |            | BR211 indicates the site is in                                                         | a low radon area and no radon protection is required.                                                                                                                                                               |